

HEX RC Hardware Manual

Revision: 1.04.00

Global Technical Support

Go to www.aerotech.com/global-technical-support for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

United States (Wo	rld Headquarters)
Email: Support@aerotech.com Phone: +1-412-967-6440 Fax: +1-412-967-6870	101 Zeta Drive Pittsburgh, PA 15238-2811 www.aerotech.com
United Kingdom	China
Email: Support@aerotech.com Phone: +44 (0)1256 855055 Fax: +44 (0)1256 855649	Email: Support@aerotech.com Phone: +86 (21) 5508 6731
Germany	Taiwan
Email: Support@aerotech.com Phone: +49 (0)911 967 9370 Fax: +49 (0)911 967 93720	Email: Support@aerotech.com Phone: +886 (0)2 8751 6690
France	
Email: Support@aerotech.com Phone: +33 2 37 21 87 65	

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2015-2019, Aerotech, Inc., All rights reserved.

Aerotech Worldwide

Table of Contents

HEX RC Hardware Manual	1
Table of Contents	3
List of Figures	5
List of Tables	6
EU Declaration of Conformity	7
Agency Approvals	8
Safety Procedures and Warnings	
Quick Installation Guide	11
Chapter 1: Introduction	12
1.1 Electrical Specifications	13
1.2 Mechanical Specifications	17
1.2. Intechanical Specifications	19
1.3. Environmental Specifications	
Chapter 2: Installation and Configuration	23
2.1. Unpacking the Chassis	23
2.2. Electrical Installation	24
2.2.1. AC Power Connections	25
2.2.2. Minimizing Conducted, Radiated, and System Noise	26
2.2.3. I/O and Signal Wiring Requirements	26
2.3. Motor Feedback Connector	27
2.3.1. Encoder Inputs	28
2.3.1.1. Square Wave (RS-422) Encoder Interface (-FC1, -FC3 Options)	29
2.3.1.2. Analog Encoder Interface (-FC2, -FC4 Options)	30
2.3.1.3. Encoder Phasing	32
2.3.2. Hall-Effect Inputs	33
2.3.3. Thermistor Input	34
2.3.4. End Of Travel Limit Inputs	35
2.3.4.1. End Of Travel Limit Phasing	36
2.3.5. Motor Output Interface	37
2.3.5.1. Brushless Motor Connections	38
2.3.5.2. DC Brush Motor Connections	41
2.3.5.3. Stepper Motor Connections	42
2.4. Digital and Analog I/O Connections	43
2.4.1. Analog Input 1	44
2.4.2. Analog Output 1	45
2.4.3. Digital Outputs	46
2.4.4. Digital Inputs	48
2.5. Position Synchronized Output (PSO)	50
2.6. DVI Connector	53
2.7. USB Connectors	54
2.8. Ethernet Connector	55
2.9. FireWire® Connector	56
Chapter 3: Options	57
3.1. Emergency Stop (-EST3)	
3.2. MPGĂ Connector	61
Chapter 4: Maintenance	63
4 1 Power Board Assembly	ده
4.2 Preventative Maintenance	+0
	05

Appendix A: Warranty and Field Service	67
Appendix B: Revision History	69
Index	. 71

List of Figures

Figure 1-1:	Chassis Layout			
Figure 1-2:	Functional Diagram			
Figure 1-3:	Dimensions			
Figure 2-1:	Power and Control Connector Locations			
Figure 2-2:	Power Switch Location			
Figure 2-3:	Line Driver Encoder Interface			
Figure 2-4:	Analog Encoder Phasing Reference Diagram			
Figure 2-5:	Analog Encoder Signals Schematic			
Figure 2-6:	Encoder Phasing Reference Diagram (Standard)	.32		
Figure 2-7:	Position Feedback in the Diagnostic Display	.32		
Figure 2-8:	Hall-Effect Inputs Schematic	.33		
Figure 2-9:	Thermistor Input Schematic	34		
Figure 2-10:	End of Travel Limit Input Connections	.35		
Figure 2-11:	End of Travel Limit Inputs Schematic	.35		
Figure 2-12:	Limit Inputs in the Diagnostic Display	36		
Figure 2-13:	Brushless Motor Configuration	.38		
Figure 2-14:	Encoder and Hall Signals in the Diagnostic Display	.39		
Figure 2-15:	Motor Phasing Oscilloscope Example	.40		
Figure 2-16:	Brushless Motor Phasing Goal	.40		
Figure 2-17:	DC Brush Motor Configuration	41		
Figure 2-18:	Clockwise Motor Rotation	.41		
Figure 2-19:	Stepper Motor Connection Schematic	.42		
Figure 2-20:	Clockwise Motor Rotation	.42		
Figure 2-21:	Analog Input 1	44		
Figure 2-22:	Analog Output 1	45		
Figure 2-23:	Digital Outputs Connected in Current Sourcing Mode	.47		
Figure 2-24:	Digital Outputs Connected in Current Sinking Mode	47		
Figure 2-25:	Digital Inputs Connected to a Current Sourcing Device	.49		
Figure 2-26:	Digital Inputs Connected to a Current Sinking Device	49		
Figure 2-27:	PSO Outputs Connected in Sourcing Mode	.51		
Figure 2-28:	PSO Outputs Connected in Sinking Mode	52		
Figure 2-29:	DVI Connector Location	53		
Figure 2-30:	USB 2.0 Connector Location	.54		
Figure 2-31:	USB 3.0 Connector Locations	.54		
Figure 2-32:	Ethernet Connection	55		
Figure 2-33:	FireWire Connector Location	.56		
Figure 3-1:	ESTOP Option Interface	58		
Figure 3-2:	-EST3 Option Schematic	.59		
Figure 3-3:	-EST3 with MPGA Option Schematic	.60		
Figure 3-4:	MPGA Connector Location	61		
Figure 4-1:	Power Board	64		

List of Tables

Table 1-1:	Feature Summary	14
Table 1-2:	Ordering Options	.15
Table 1-3:	Chassis Electrical Specifications	.17
Table 1-4:	Servo Amplifier Electrical Specifications (MP)	.18
Table 1-5:	Unit Weight	19
Table 1-6:	Drive and Software Compatibility	22
Table 2-1:	Main AC Input Power Voltages and Current Requirements	.25
Table 2-2:	AC Power Cord Wiring Specifications	.25
Table 2-3:	I/O and Signal Wiring Specifications	.26
Table 2-4:	I/O and Signal Wiring Recommended Wire Sizes	26
Table 2-5:	Motor Feedback Connector Pinout	.27
Table 2-6:	Mating Connector Part Numbers for the Motor Feedback Connector	27
Table 2-7:	Encoder Pins on the Motor Feedback Connector	28
Table 2-8:	Square Wave Encoder Specifications	29
Table 2-9:	Analog Encoder Specifications	.30
Table 2-10:	Hall-Effect Feedback Pins on the Motor Feedback Connector	.33
Table 2-11:	Thermistor Input Pin on the Motor Feedback Connector	.34
Table 2-12:	End of Travel Limit Input Pins on the Motor Feedback Connector	.35
Table 2-13:	Motor Output Connection Pins on the Motor Feedback Connector	.37
Table 2-14:	Digital / Analog IO Connector Pinout	43
Table 2-15:	Analog Input 1 Specifications	44
Table 2-16:	Analog Input Pins on the Digital/Analog I/O Connector	.44
Table 2-17:	Analog Output 1 Specifications	45
Table 2-18:	Analog Output Pins on the Digital/Analog I/O Connector	.45
Table 2-19:	Digital Output Specifications	.46
Table 2-20:	Digital Output Pins on the Digital/Analog I/O Connector	46
Table 2-21:	Digital Input Specifications	.48
Table 2-22:	Digital Input Pins on the Digital/Analog I/O Connector	48
Table 2-23:	PSO Specifications	.50
Table 2-24:	PSO Connector Pinout	50
Table 2-25:	Mating Connector for the PSO Connector	.50
Table 2-26:	Ethernet Cable Specifications	55
Table 2-27:	FireWire Repeaters (for cables exceeding 4.5 m (15 ft) specification)	.56
Table 2-28:	FireWire Cables (copper and glass fiber)	56
Table 3-1:	Options and Capabilities	.57
Table 3-2:	Mating Connector Part Numbers for the ESTOP Connector	.58
Table 3-3:	ESTOP Safety Ratings	59
Table 3-4:	ESTOP Relay Specifications	.59
Table 3-5:	MPGA Connector Pinout	.62
Table 4-1:	Component Select	.64
Table 4-2:	Preventative Maintenance	65

EU Declaration of Conformity

Manufacturer	Aerotech, Inc.
Address	101 Zeta Drive
	Pittsburgh, PA 15238-2811
	USA
Product	HEX RC
Model/Types	All

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

2006/42/EC	Safety of Machinery
2014/35/EU	Low Voltage Directive
2011/65/EU	RoHS 2 Directive

and has been designed to be in conformity with the applicable requirements of the following Standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61010-1:2010	Safety requirements for Electrical Equipment for measurement, control, and laboratory use Safety of Machinery - General Principals of Design
Authorized Representative: Address:	Simon Smith, European Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK
Name	allex Rohrenberg / Alex Weibel

Name Position Location Date

Engineer Verifying Compliance Pittsburgh, PA 9/4/2019

CE

Agency Approvals

Aerotech, Inc. Model HEX RC 6-Axis Robotic Controller has been tested and found to be in accordance to the following listed Agency Approvals:

Approval / Certification:	CUSNRTL
Approving Agency:	TUV SUD America Inc.
Certificate #:	U8 068995 0029 Rev. 00
Standards:	CAN/CSA-C22.2 No. 61010-1:2012; UL 61010-1:2012; EN 61010-
	1:2010

Visit https://www.tuev-sued.de/product-testing/certificates to view Aerotech's TÜV SÜD certificates. Type the certificate number listed above in the search bar or type "Aerotech" for a list of all Aerotech certificates.

Safety Procedures and Warnings

This manual tells you how to carefully and correctly use and operate the HEX RC. Read all parts of this manual before you install or operate the HEX RC or before you do maintenance to your system. To prevent injury to you and damage to the equipment, obey the precautions in this manual. The precautions that follow apply when you see a Danger or Warning symbol in this manual. If you do not obey these precautions, injury to you or damage to the equipment can occur. If you do not understand the information in this manual, contact Aerotech Global Technical Support.

This product has been designed for light industrial manufacturing or laboratory environments. The protection provided by the equipment could be impaired if the product is used in a manner not specified by the manufacturer.

DANGER: This product contains potentially lethal voltages. To reduce the possibility of electrical shock, bodily injury, or death the following precautions must be followed.

- 1. Disconnect electrical power before servicing equipment.
- 2. Disconnect electrical power before performing any wiring.

- 3. To minimize the possibility of electrical shock and bodily injury, extreme care must be exercised when any electrical circuits are in use. Suitable precautions and protection must be provided to warn and prevent persons from making contact with live circuits.
- 4. Do not connect or disconnect any electrical components or connecting cables while connected to a power source.
- 5. All components must be properly grounded in accordance with local electrical safety requirements.
- 6. Operator safeguarding requirements must be addressed during final integration of the product.

DANGER/HEAVY: To avoid injury, use two or more people to move and install this product.

- Refer to Table 1-1 for chassis mass specifications.
- Use a cart to move the product.
- Do not use the handles on the front of the product to lift or move this product. Use the handles only to slide the product in and out of its enclosure.
- Lift this product only by the base. Do not use the cables or the connectors to lift or move this product.

WARNING: To minimize the possibility of electrical shock, bodily injury or death the following precautions must be followed.

- 1. Moving parts can cause crushing or shearing injuries. Access to all stage and motor parts must be restricted while connected to a power source.
- 2. Cables can pose a tripping hazard. Securely mount and position all system cables to avoid potential hazards.

- Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.
- 4. If the product is used in a manner not specified by the manufacturer, the protection provided by the product can be impaired and result in damage, shock, injury, or death.
- 5. Operators must be trained before operating this equipment.
- 6. All service and maintenance must be performed by qualified personnel.

This page intentionally left blank.

Quick Installation Guide

This chapter describes the order in which connections and settings should typically be made to the HEX RC. If a custom interconnection drawing was created for your system (look for a line item on your Sales Order under the heading "Integration"), that drawing can be found on your installation device.

The HEX RC is provided to the user fully configured for operation of a Hexapod, including servo tuning for the user's load requirements if the load requirements have been provided to Aerotech.

For additional information about HEX RC, refer to the HexGen Programming Guide and the A3200 Help file.

Figure 1: Quick Start Connections

This page intentionally left blank.

Chapter 1: Introduction

Aerotech's HEX RC is a high-performance, 6-axis motion controller ideal for controlling robotic systems like hexapods. The HEX RC is 4U high, rack-mountable, and compatible with the Automation 3200 motion platform.

The HEX RC performs both current loop and servo loop closures digitally to ensure the highest level of positioning accuracy and performance. With the A3200 distributed control architecture, the HEX RC can connect and control up to 26 additional external axes.

In environments such as beamlines, the HEX RC can interface with a host control platform and receive control commands via an ASCII command interface over TCP/IP. Alternatively, the HEX RC can act as a master controller and control other A3200 external drives via the FireWire interface.

The HEX RC can accept amplified-sine or digital encoders. With on-board encoder multiplication up to 4096 times high-resolution positioning is realized in a cost-effective, high-performance package.

An optional 6-axis jog pendant can be added for manual control of the positioning system. In safety critical applications, an emergency stop option with redundant safety relays is available.

Figure 1-1: Chassis Layout

Table 1-1: Feature Summary		
Feature	Description	
Brosseer	Intel Core i7-6700, 4 Core, 3.4 GHz, 8 MB Cache,	
	2 x 8 GB DDR4 2133 MHz, Dual channel memory	
Number of Axes	Six	
Encoder Inputs	Six (1 Vpp or RS-422)	
Motor Style	Brush, Brushless, Stepper	
Power Supply	Single-Phase 100-230 VAC; 50/60 Hz (factory configured)	
Power Output	600 w continuous	
Bus Voltage	80 VDC	
Peak Output Current (1 sec) ⁽¹⁾	10 Apk	
Continuous Output Current ⁽¹⁾	5 Apk	
Digital Inputs	16, opto-isolated	
Digital Outputs	16, opto-isolated	
Analog Inputs	Two total, ±10 V 12-bit differential	
	One on each I/O connector	
Analog Outputs	Two, ±5 V 16-bit	
High-Speed Data Capture	Yes (50 ns latency)	
Emergency Stop (ESTOP)	Optional	
Position Synchronized Output (PSO)	Single Axis Standard	
Primary Encoder Input Frequency (1 Vpp)	200 kHz sine wave	
Primary Encoder Input Frequency (RS-422)	10 MHz square wave / 40 MHz count rate	
Interfaces	ASCII command interface via TCP/IP; FireWire (IEEE-1394)	
Fieldbus	Modbus TCP on PC	
USB Ports	Four (USB 3.0 / USB 2.0), Used for Peripheral Device Connection	
Video Port	DVI-I	
Jog Pendant	Optional, Six Axis (MPGA)	
Encoder Multiplication	Programmable up to x4096	
Current Loop Update Rate	20 kHz	
Servo Loop Update Rate	8 kHz	
Power Amplifier Bandwidth	Selectable through software	
Minimum Load Inductance	0.1 mH	
Operating Temperature	5 to 40°C	
Storage Temperature	5 to 80°C	
Weight	25 kg	
(1) Peak value of the sine wave; rms current for AC motors is 0.707* Apk		

Table 1 1 Foaturo Summary

Table 1-2: Ordering Options

HEX RC Multi-Axis Robotic Controller				
	Rack-mount, six-axis, robotic controller with FireWire® with TCP/IP ASCII interfaces;			
	100-230 VAC single-phase power supply.			
Line Voltage	Line Voltage			
-A	115 VAC line			
-В	230 VAC line			
-C	100 VAC line			
-D	200 VAC line			
Feedback and	Jog Pendant Configuration			
-FC1	Standard TTL encoder feedback			
-FC2 ⁽¹⁾	Amplified sine encoder feedback with programmable encoder multiplier up to x4096			
-FC3	Standard TTL encoder feedback and connector interface for 6-axis jog pendant (MPG). Jog-pendant must be ordered as separate line item.			
-FC4 ⁽¹⁾	Amplified sine encoder feedback with programmable encoder multiplier up to x4096 and connector interface for 6-axis jog pendant (MPG). Jog pendant must be ordered as separate line item.			
(1) Internal Ndrive	MP10s are configured with the -MXU option			
PSO				
-PSO1	One-axis PSO firing.			
-PSO5 Two-axis part-speed PSO firing. Use the PSO firing circuit based on the commande				
-PSO6	Three-axis part-speed PSO firing. Use the PSO firing circuit based on the commanded vector velocity of up to 2 axes.			
Line Cord				
-LC1	US 115 VAC line cord			
-LC2	US 230 VAC line cord			
-LC3	UK compatible line cord			
-LC4	German compatible line cord			
-LC5	Israel compatible line cord			
-LC6	India compatible line cord			
-LC7	Australian compatible line cord			
Options				
•	ESTOP3 - controller stops motion, then disables servo control; internal positive guided			
-EST3	relays with monitor contact disconnect AC power source from motor (uses two relays for redundancy); contains one-second bus discharge resistors; operator risk assessment is the responsibility of the end user or integrator			
-SL1	Rack-mount slides			
Accessories (Ordered as a separate line item)				
MPG	Six-axis jog pendant			

The following block diagram illustrates the features and options of the HEX RC.

Figure 1-2: Functional Diagram

1.1. Electrical Specifications

The electrical specifications for the HEX RC drive chassis are listed in Table 1-3 and the electrical specifications for the servo amplifiers in Table 1-4 and 1.1.

•		
Description Specifications		Specifications
Total Motor P	ower Supply	80 V @ 600W
100 VAC	100 VAC	10 A Maximum
Input	115 VAC	10 A Maximum
Current	200 VAC	6 A Maximum
	230 VAC	5 A Maximum
Inrush Currer	Inrush Current 100 A @ 254 VAC	
Leakage Curr	Leakage Current <2 mA @ 60 Hz / 254 VAC	
AC Power Input		 AC input (factory configured): AC Hi, AC Lo, Earth Ground (⊕), 100 VAC (90-112 VAC, 49-63 Hz) 115 VAC (103-127 VAC, 49-63 Hz) 200 VAC (180-224 VAC, 49-63 Hz) 230 VAC (207-254 VAC, 49-63 Hz)
Auxiliary Power Outputs +5 V is provided on all axis feedback connectors for encode power.		+5 V is provided on all axis feedback connectors for encoder, Hall, and limit power.
Protection		 Power switch / breaker (10 A, Supplemental Protection only). Fuses on motor bus supply transformer. Bus supply inrush current limit during power-on.
Indicator (Power) Power switch contains a power-on indicator.		Power switch contains a power-on indicator.

Table 1-3: Chassis Electrical Specifications

The HEX RC uses an Ndrive MP10 with encoder multiplier (MXU) for each axis. The first two axes contain the I/O option, which is available to the user through the two Digital/Analog I/O connectors on the rear panel of the HEX RC.

Table 1-4:	Servo Am	olifier Electric	al Specifications	5 (MP)
				, ,

	MP 10	
Output Voltage	80 VDC (referenced to earth ground)	
Peak Output Current (1 second)	10 A	
Continuous Output Current	5 A	
Power Amplifier Bandwidth	2500 Hz maximum (software selectable)	
Power Amplifier Efficiency	85% - 95%	
PWM Switching Frequency	20 kHz	
Minimum Load Inductance	0.1 mH @ 80 VDC	
User Power Supply Output	5 VDC (@ 500 mA)	
Modes of Operation	Brushless; Brush; Stepper	
	Output short circuit; Peak over current; RMS over current;	
Protective Features	Over temperature; Control power supply under voltage;	
	Power stage bias supply under voltage	
Isolation	Optical and transformer isolation between control and power	
	stages.	

1.2. Mechanical Specifications

The HEX RC must be installed in a rack mount console to comply with safety standards. Mount the HEX RC so free airflow is available at the rear of the chassis. Allowance must also be made for the rear panel connections and cables.

DANGER/HEAVY: To avoid injury, use two or more people to move and install this product.

- Refer to Table 1-1 for chassis mass specifications.
- Use a cart to move the product.
- Do not use the handles on the front of the product to lift or move this product. Use the handles only to slide the product in and out of its enclosure.
- Lift this product only by the base. Do not use the cables or the connectors to lift or move this product.

Table 1-5: Unit Weight

Description	Weight
Chassis Weight (typical)	25 kg

Figure 1-3: Dimensions

1.3. Environmental Specifications

	Operating: 5° to 40°C
Amplent Temperature	Storage: 5° to 80°C
Humidity	Maximum relative humidity is 80% for temperatures up to 31°C.
Turnuty	Decreasing linearly to 50% relative humidity at 40°C. Non condensing.
Altitude	Up to 2000 meters.
Pollution	Pollution degree 2 (normally only non-conductive pollution).
Use	Indoor use only.
Audible Naiss	71 db at 1 meter (rear fan and side fan)
Audible Moise	77 db at 1 meter (rear fan and side fan)

The environmental specifications for the HEX RC are listed below.

1.4. Drive and Software Compatibility

The following table lists the available drives and which version of the software first supported the drive. Drives that list a specific version number in the **Last Software Version** column will not be supported after the listed version.

Table 1-6:	Drive and Software	Compatibility
------------	--------------------	---------------

Drive Type	Firmware Revision	First Software Version	Last Software Version
HEX RC	-	2.14	Current

Chapter 2: Installation and Configuration

2.1. Unpacking the Chassis

Visually inspect the container of the HEX RC for any evidence of shipping damage. If any such damage exists, notify the shipping carrier immediately.

Remove the packing list from the HEX RC container. Make sure that all the items specified on the packing list are contained within the package.

DANGER/HEAVY: To avoid injury, use two or more people to move and install this product.

- The HEX RC exceeds 25 kg (55 lbs).
- Use a cart to move the product.
- Do not use the handles on the front of the product to lift or move this product. Use the handles only to slide the product in and out of its enclosure.
- Lift this product only by the base. Do not use the cables or the connectors to lift or move this product.

All of the documentation provided with the HEX RC should be saved for future reference. Additional information about the HEX RC system is provided on the Serial and Power labels that are placed on the HEX RC chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

The AC power input label is located beside the AC power inlet and contains the factory configured AC power requirements.

2.2. Electrical Installation

NOTE: The machine integrator, OEM, or end user is responsible for meeting the final protective grounding requirements of the system.

Motor, power, control and position feedback cable connections are made to the rear of the HEX RC.

Figure 2-1: Power and Control Connector Locations

Figure 2-2: Power Switch Location

All low voltage connections must be made using cables and wires sized for the maximum currents that will be carried. Low voltage wiring should not be bundled with AC and motor wiring to minimize signal disturbances due to EMI interference and coupling.

2.2.1. AC Power Connections

AC input power to the HEX RC is applied to the receptacle that is located on the rear panel. The main power switch is located on the front panel of the HEX RC. The main power switch also functions as a 10 A breaker (supplementary protection only) for the incoming AC power. Refer to Section 1.1. Electrical Specifications for the electrical specifications.

The HEX RC drive chassis is factory-configured for one of four specified input voltages. The factory configured AC input voltages, along with the current requirements for the HEX RC drive chassis, are listed in Table 2-1.

AC Input Voltage	Input Amps (maximum continuous)	Wire Size
100 VAC 50/60 Hz	10 A	16 AWG (1.5 mm ²)
115 VAC 50/60 Hz	10 A	16 AWG (1.5 mm ²)
200 VAC 50/60 Hz	6 A	18 AWG (1 mm ²)
230 VAC 50/60 Hz	5 A	18 AWG (1 mm ²)

Table 2-1: Main AC Input Power Voltages and Current Requirements

Environmental conditions may necessitate the need to meet additional AC wiring requirements or specifications. AC wiring should not be bundled with signal wiring to minimize EMI coupling and interference.

Table 2-2: AC Power Cord Wiring Specifications

Specification	Value	
Cord/Wire Rating	300 V	
Minimum Current Capacity	10 A	
Temperature Rating (Insulation) ⁽¹⁾ 80°C		
1. The insulation rating for the AC power wiring must be appropriately rated for the operating environment.		

2.2.2. Minimizing Conducted, Radiated, and System Noise

To reduce electrical noise, observe the following wiring techniques.

- 1. Use shielded cable to carry the motor current and tie the shield to the connector backshell.
- 2. Use a cable with sufficient insulation. This will reduce the capacitive coupling between the leads that, in turn, reduces the current generated in the shield wire.
- 3. User connections to the product must be made using shielded cables with metal D-style connectors and back shells. The shield of the cables must be connected to the metal back shell in order for the product to conform to radiated emission standards.
- 4. The HEX RC is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

2.2.3. I/O and Signal Wiring Requirements

The I/O, communication, and encoder feedback connections are typically very low power connections. In some applications, especially when there are significant wire distances, a larger wire size may be required to reduce the voltage drop that occurs along the wire. This increase may be necessary in order to keep the voltage within a specified range at a remote point.

Low voltage and high voltage wires should be kept physically separated so that they cannot contact one another. This reduces the risk of electric shock and improves system performance.

Connection	Specification	Value
	Cable/Wire Rating ⁽¹⁾	300 V
Signal Wiring	Minimum Current Capacity	.25 A
	Temperature Rating (Insulation) ⁽²⁾	80°C
	Cable/Wire Rating ⁽¹⁾	300 V
Low Voltage Power	Minimum Current Capacity ⁽³⁾	1 A
	Temperature Rating (Insulation) ⁽²⁾	80°C
4 > 001/1646	- I	

Table 2-3: I/O and Signal Wiring Specifications

 $1. \ge 30$ V if the wiring is **not** in close proximity to wiring operating at voltages above 60 V.

Insulation rating will need to be rated for the higher voltage if the wiring is in proximity to wiring operating at voltages above 60 V.
 Larger gauge wire may be required to minimize voltage drop due to voltage (IR) loss in the cable.

Table 2-4: I/O and Signal Wiring Recommended Wire Sizes

AWG	mm ²
22	.34
24	.25
26	.14
28	.08

2.3. Motor Feedback Connector

The motor feedback connector (a 25-pin, D-style connector) has connections for an encoder, limit switches, Hall-effect devices, motor over-temperature device, 5 V encoder and limit power, and motor connections.

Pin#	Description	In/Out/Bi	Connector
1	Key (Ensures that correct cable is plugged into the correct jack)	Input	
2	Cosine-N	Input	
3	Sine-N	Input	
4	Marker-N	Input	
5	Common		
6	Common		
7	Negative (CCW) hardware limit	Input	\bigcirc
8	Hall Effect sensor, phase A	Input	1 14
9	Hall Effect sensor, phase C	Input	
10	Frame Ground		
11	Motor Phase A	Output	
12	Motor Phase B	Output	
13	Motor Phase C	Output	
14	Cosine	Input	
15	Sine	Input	
16	Marker	Input	
17	+5 V power supply	Output	
18	Reserved	Input	13 25
19	Positive (CW) hardware limit	Input	\bigcirc
20	Motor Thermistor	Input	
21	Hall Effect sensor, phase B	Input	
22	Frame Ground		
23	Motor Phase A	Output	
24	Motor Phase B	Output	
25	Motor Phase C	Output	

 Table 2-5:
 Motor Feedback Connector Pinout

 Table 2-6:
 Mating Connector Part Numbers for the Motor Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.3.1. Encoder Inputs

The HEX RC contains Ndrive MP10 drives.

Standard Encoder Interface (-FC1, -FC3)

The MP10 drives are parameter-configured for square wave (RS-422) encoder signals. Refer to Section 2.3.1.1.

Analog Encoder Interface (-FC2, -FC4)

The MP10 drives have the -MXU option and are parameter-configured for analog encoder signals. Refer to Section 2.3.1.2.

Refer to Section 2.3.1.3. for encoder feedback phasing.

NOTE: Encoder wiring should be physically isolated from AC power and other high-voltage wiring.

NOTE: The PSO feature is **not** compatible with the -MXU option.

Table 2-7: Encoder Pins on the Motor Feedback Connector

Pin#	Description	In/Out/Bi
2	Cosine-N	Input
3	Sine-N	Input
4	Marker-N	Input
5	Common	
14	Cosine	Input
15	Sine	Input
16	Marker	Input
17	+5 V power supply	Output

2.3.1.1. Square Wave (RS-422) Encoder Interface (-FC1, -FC3 Options)

The standard encoder interface accepts an RS-422 differential quadrature line driver signal. Invalid or missing signals will cause a feedback fault when the axis is enabled.

Table 2-8: Square Wave Encoder Specifications

Specification	Value		
Encoder Frequency	10 MHz maximum (25 nsec minimum edge separation)		
x4 Quadrature Decoding	40 million counts/sec		

Figure 2-3: Line Driver Encoder Interface

2.3.1.2. Analog Encoder Interface (-FC2, -FC4 Options)

The HEX RC controller contains Ndrive MP10 drives with the -MXU option. The drive is software-configured to accept analog encoder signals (refer to the A3200 Help file for information on the PositionFeedbackType and EncoderMultiplicationFactor parameters). The encoder interpolation factor is software-selectable (refer to the A3200 Help file).

Table 2-9:	Analog	Encoder	Specifications
------------	--------	---------	----------------

Specification	Value		
Input Frequency (max)	200 kHz		
Input Amplitude	0.6 to 2.25 Vpk-Vpk		
Interpolation Factor (software selectable)	4,096		

NOTE: The PSO feature is **not** compatible with the -MXU option.

Refer to Figure 2-4 for the typical analog encoder input circuitry.

The gain, offset, and phase balance of the analog Sine and Cosine encoder input signals can all be adjusted via controller parameters. Encoder signals should be adjusted using the Feedback Tuning tab of the Digital Scope, which will automatically adjust the encoder parameters for optimum performance. See the A3200 Help file for more information.

Figure 2-4: Analog Encoder Phasing Reference Diagram

2.3.1.3. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-6 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-7). The Motor Phasing Calculator in the Configuration Manager can be used to determine proper encoder polarity.

Figure 2-6: Encoder Phasing Reference Diagram (Standard)

NOTE: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-6.

olling rate: Medium 🔻	Diagnostics			
Axes	Item	Х	Y	Z
Axis Status	Status			
Diagnostics	Position Feedback	00000000000000	0000000000000	000000000
Drive Status	Position Calibration All	000000000000000000000000000000000000000	0000000000000	000000000
Fault	Position Master/Slave	00000000000000	0000000000000	000000000
 Tasks 	Position Gantry Offset	000000000000000000000000000000000000000	0000000000000	0000000000
Task Mode	Auxiliary Position Feedback	00000000000000	00000000000000	0000000000
Task Status 0	Analog Input 0	0.0000	0.0000	0.0
Task Status 2	Analog Input 1	0.0000	0.0000	0.0
Tasks	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Controller	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Drive Interface	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Drive Nodes	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0
Ethernet	Average Velocity Feedback	00000000000000	0000000000000	0000000000
	Current Feedback	0.0000	0.0000	0.0
	Transition Offset Errors	0	0	
	Hardware			
	Enable			
	CW			
	CCW			

Figure 2-7: Position Feedback in the Diagnostic Display

2.3.2. Hall-Effect Inputs

The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5-24 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

Refer to Section 2.3.5.1. for Hall-effect device phasing.

 Table 2-10:
 Hall-Effect Feedback Pins on the Motor Feedback Connector

Pin#	Description	In/Out/Bi
5	Common	
8	Hall Effect sensor, phase A	Input
9	Hall Effect sensor, phase C	Input
10	Frame Ground	
17	+5 V power supply	Output
21	Hall Effect sensor, phase B	Input

Figure 2-8: Hall-Effect Inputs Schematic

2.3.3. Thermistor Input

The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low (i.e., 100 ohms) which will result in a low input signal. As the increasing temperature causes the thermistor's resistance to increase, the signal will be seen as a logic high triggering an over temperature fault. The nominal trip value of the sensor is 1k Ohm.

Table 2-11: Thermistor Input Pin on the Motor Feedback Connector

Pin#	Description	In/Out/Bi
20	Motor Thermistor	Input
	PIN-20 THERMISTOR	<i>—</i> —

Figure 2-9: Thermistor Input Schematic

2.3.4. End Of Travel Limit Inputs

End of Travel (EOT) limits are used to define the end of physical travel. The EOT limit inputs accept 5-24 VDC level signals. The active state of the EOT limits is software selectable by the EndOfTravelLimitSetup axis parameter (refer to the A3200 Help file). Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-12).

Positive motion is stopped by the clockwise (CW) end of travel limit input. Negative motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead.

NOTE: The Home Limit signal is not available on the HEX RC. The end of travel limits must be used during homing.

Figure 2-10: End of Travel Limit Input Connections

 Table 2-12:
 End of Travel Limit Input Pins on the Motor Feedback Connector

Pin#	Description	In/Out/Bi
6	Common	
7	Negative (CCW) hardware limit	Input
17	+5 V power supply	Output
19	Positive (CW) hardware limit	Input

Figure 2-11: End of Travel Limit Inputs Schematic

2.3.4.1. End Of Travel Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the motor feedback connector. The logic level of the EOT limit inputs may be viewed in the Status Utility (shown in Figure 2-12).

🔶 Export Settin	ngs				
Polling rate: Medium Diagnostics					
Polling rate: Medium Polling rate: Medium Axes Axis Status Drive Info Drive Status Fault Task Task Mode Task Status 0 Task Status 1 Task Status 1 Task Status 2 Tasks Controller Data Collection Drive Interface Drive Nodes Ethernet	Diagnostics Item Auxiliary Position Feedback Analog Input 0 Analog Input 1 Digital Input 15:0 Digital Input 31:16 Digital Output 15:0 Digital Output 31:16 Average Velocity Feedback Current Feedback Transition Offset Errors Hardware Enable CW CCW Home Marker Hall A Hall B Hall C CEDD	k 000000000000 0.0000 0000 0000 0000 0.0000 000000	V 000000000000 0.0000 0.0000 0000 0000	Z 00000000000 0,000 0,000 0000 0000 0	
	Brake				

Figure 2-12: Limit Inputs in the Diagnostic Display
2.3.5. Motor Output Interface

The HEX RC is capable of driving three motor types:

- Brushless Motors (Hexapod): refer to Section 2.3.5.1.
- DC Brush Motors: refer to Section 2.3.5.2.
- Stepper Motors: refer to Section 2.3.5.3.

Table 2-13: Motor Output Connection Pins on the Motor Feedback Connector

Pin#	Description	In/Out/Bi
10	Frame Ground	
11	Motor Phase A	Output
12	Motor Phase B	Output
13	Motor Phase C	Output
22	Frame Ground	
23	Motor Phase A	Output
24	Motor Phase B	Output
25	Motor Phase C	Output

2.3.5.1. Brushless Motor Connections

The configuration shown in Figure 2-13 is an example of a typical brushless motor connection.

Figure 2-13: Brushless Motor Configuration

Brushless Motor Phasing

Brushless motors are commutated electronically by the controller, typically using Hall-effect devices. If you are using standard Aerotech motors and cables, motor phasing adjustments are not required and this section may be skipped.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Hall-effect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller.

Powered Motor Phasing

Refer to the Motor Phasing Calculator in the Configuration Manager for motor, Hall, and encoder phasing.

Axes Item X Y Z Disposites Disposites Position Feedback 000000000000 00000000000 00000000000 Drive Info Drive Info Position Calibration All 000000000000 000000000000 00000000000 Fault Position Gantry Offset 000000000000 00000000000 0000000000 00000000000 Task Status 0 Task Status 1 Analog Input 0 0.0000 0.0000 00000000000 0000000000 Task Status 1 Task Status 2 Analog Input 1 0.0000 0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 <t< th=""><th>olling rate: Medium 🔻</th><th>Diagnostics</th><th></th><th></th><th></th></t<>	olling rate: Medium 🔻	Diagnostics			
Status Status Disgnostics Position Feedback 000000000000 00000000000 00000000000 Drive Info Position Calibration All 000000000000 000000000000 000000000000 Tasks Position Calibration All 000000000000 000000000000 000000000000 Tasks Position Galibration All 000000000000 000000000000 00000000000 Tasks Position Gantry Offset 000000000000 000000000000 000000000000 Task Status 1 Analog Input 0 0.0000 0.0000 0.0000 0000 0000 0000 Task Status 2 Analog Input 1 0.0000 0.0000 0000 0000 0000 0000 0000 0000 Controller Digital Input 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Drive Interface Digital Output 31:16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Drive Nodes Digital Cutput 31:16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 0000 000	 Axes 	Item	Х	Y	Z
Dissignation Position Feedback 000000000000 00000000000 000000000000000000000000000000000000	Axis Status	Status			
Drive Status Fault Position Calibration All 00000000000 00000000000 0000000000000000 000000000000000000000000000000000000	Diagnostics	Position Feedback	0000000000000	0000000000000	0000000000
Fault Position Master/Slave 000000000000 00000000000 0000000000 Task Node Position Gantry Offset 000000000000 00000000000 0000000000 0000000000 00000000000 0000000000000000 000000000000000000000000000000000000	Drive Status	Position Calibration All	0000000000000	0000000000000	0000000000
O Tasks Task Mode Task Mode Task Status 0 Task Status 2 Task Status 0 Task Status 2 Task Status 2 Task Status 2 Task Status 0 Task Status 2 Task Status 0 Task Status 1 Task Status 0 Task Status 0 Task Status 0 Task Status 0 Task Status 2 Task Status 0 Task Status 2 Task Status 0 Task Status 1 Task Status 0 Task St	Fault	Position Master/Slave	00000000000000	00000000000000	0000000000
Task Mode Task Status 0 Task Status 1 Task Status 1 Task Status 1 Task Status 1 Task Status 1 Analog Input 0 0.00000000000 0.00000000000 Digital Input 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Digital Input 15:0 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 000 000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 000 000 000 000 </td <td> Tasks </td> <td>Position Gantry Offset</td> <td>00000000000000</td> <td>00000000000000</td> <td>0000000000</td>	 Tasks 	Position Gantry Offset	00000000000000	00000000000000	0000000000
Task Status 1 Task Status 1 Task Status 1 Analog Input 0 0.0000 0.0000 Task Status 1 Task Status 2 Analog Input 1 0.0000 0.0000 0.0000 Task Status 2 Digital Input 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 Controller Data Collection Digital Input 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 Drive Interface Digital Output 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 Drive Nodes Average Velocity Feedback 0000 0000 0000 0000 0000 0000 0000 0000 0000 Current Feedback 0.0000 0.0000 0.0000 0000 0000 0000 Transition Offset Errors 0 0 0 0 0 0 CCW	Task Mode	Auxiliary Position Feedback	00000000000000	00000000000000	0000000000
Task Status 2 Tasks tarks 2 Tasks tarks 2 Controller Analog Input 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	Task Status 0	Analog Input 0	0.0000	0.0000	0.00
Tasks Controller Deta Collection Digital Input 15:0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Deta Collection Digital Input 31:16 0000 0000 0000 0000 0000 000 0000 0000 0000 000 000 000 000 000 000 000 000	Task Status 2	Analog Input 1	0.0000	0.0000	0.00
Controller Data Collection Dive Interface Digital Input 31:16 0000 0000 0000 0000 0000 000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 000 000 0000 000 000 0000 000 000 0000 000 000 0000 000 000 0000 000 000 0000 000	Tasks	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 00
Digital Output 15:0 0000 0000 000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 0000 0000 000 000 0000 0000 000 000 0000 0000 000 000 000 0000 000 000 000 000 0000 000 000 000 000 0000 000 000 000 000 0000 000 000 000 000 000 000 0000 000 000 000 000 000 000 000 000 0	Controller	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 00
Drigital Output 31:15 0000 0000 0000 0000 0000 0000 0000 0000 0000 Average Velocity Feedback 000000000000 000000000000 00000000000 Current Feedback 0.0000 0.0000 00000000000 00000000000 Transition Offset Errors 0 0 0 0 0 Enable	Data Collection	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 00
Average Velocity Feedback 000000000000 000000000000 Current Feedback 0.0000 0.0000 Transition Offset Errors 0 0 Hardware CW CW CW CW Home Home Hall A Hall B	Drive Nodes	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 00
Current Feedback 0.0000 0.0000 Transition Offset Errors 0 0 Hardware Enable CW CW Home Home Hall A Hall B	Ethernet	Average Velocity Feedback	0000000000000	00000000000000	00000000000
Transition Offset Errors00HardwareEnableCWCCWHomeMarkerHall AHall B		Current Feedback	0.0000	0.0000	0.0
Hardware Enable CW CW Home Marker Hall A Hall B		Transition Offset Errors	0	0	
Enable CW CCW Home Marker Hall A Hall B		Hardware			
CW CCW Home Marker Hall A Hall B		Enable			
CCW Home Marker Hall A Hall B		CW			
Home Marker Hall A Hall B		CCW			
Marker Hall A Hall B		Home			
Hall A Hall B		Marker			
Hall B		Hall A			
		Hall B			
Hall C		Hall C			

Figure 2-14: Encoder and Hall Signals in the Diagnostic Display

Unpowered Motor Phasing

Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-15. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-15). Wave forms are shown while moving the motor in the positive direction.

Figure 2-15: Motor Phasing Oscilloscope Example

With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in (Figure 2-16). Use the CommutationOffset parameter to correct for Hall signal misalignment.

Figure 2-16: Brushless Motor Phasing Goal

2.3.5.2. DC Brush Motor Connections

The configuration shown in Figure 2-17 is an example of a typical DC brush motor connection.

Figure 2-17: DC Brush Motor Configuration

DC Brush Motor Phasing

A properly phased motor means that the positive motor lead should be connected to the ØA motor terminal and the negative motor lead should be connected to the ØC motor terminal. To determine if the motor is properly phased, connect a voltmeter to the motor leads of an un-powered motor:

- 1. Connect the positive lead of the voltmeter to the one of the motor terminals.
- 2. Connect the negative lead of the voltmeter to the other motor terminal.
- 3. Rotate the motor clockwise by hand.

Figure 2-18: Clockwise Motor Rotation

- 4. If the voltmeter indicates a negative value, swap the motor leads and rotate the motor (CW, by hand) again. When the voltmeter indicates a positive value, the motor leads have been identified.
- 5. Connect the motor lead from the voltmeter to the ØA motor terminal on the HEX RC. Connect the motor lead from the negative lead of the voltmeter to the ØC motor terminal on the HEX RC.

NOTE: If using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

2.3.5.3. Stepper Motor Connections

The configuration shown in Figure 2-19 is an example of a typical stepper motor connection.

In this case, the effective motor voltage is half of the applied bus voltage. For example, an 80V motor bus supply is needed to get 40V across the motor.

Figure 2-19: **Stepper Motor Connection Schematic**

Stepper Motor Phasing

NOTE: If using standard Aerotech motors and cables, motor and encoder connection adjustments are not required.

A stepper motor can be run with or without an encoder. If an encoder is not being used, phasing is not necessary. With an encoder, test for proper motor phasing by running a positive motion command.

If there is a positive scaling factor (determined by the CountsPerUnit parameters) and the motor moves in a clockwise direction, as viewed looking at the motor from the front mounting flange, the motor is phased correctly. If the motor moves in a counterclockwise direction, swap the motor leads and re-run the command.

Proper motor phasing is important because the end of travel (EOT) limit inputs are relative to motor rotation.

2.4. Digital and Analog I/O Connections

The HEX RC includes Ndrive MP10 I/O connectors for axes one and two. The I/O connections includes 8 digital opto-inputs, 8 digital opto-outputs, 1 analog input, 1 analog output, a second encoder channel, and a brake/relay output.

Pin#	Description	In/Out/Bi	Connector
1	Analog Input 1+ (Differential)	Input	
2	Analog Input 1- (Differential)	Input	
3	Internal +5 Volt Power Supply (500 mA max)	Output	
4	Input Common for Digital Inputs 0 - 3	Input	
5	Digital Input 0	Input	
6	Digital Input 1	Input	\bigcirc
7	Digital Input 2	Input	
8	Digital Input 3	Input	· 14
9	Digital Output Common +	Input	• •
10	Digital Output 0	Output	••
11	Digital Output 1	Output	•
12	Digital Output 2	Output	•
13	Digital Output 3	Output	
14	Analog Output 1	Output	•
15	Ground	N/A	
16	Input Common for Digital Inputs 4 - 7	Input	••
17	Digital Input 4	Input	• •
18	Digital Input 5	Input	25
19	Digital Input 6	Input	13
20	Digital Input 7	Input	\bigcirc
21	Digital Output Common -	Input	
22	Digital Output 4	Output	
23	Digital Output 5	Output	
24	Digital Output 6	Output	
25	Digital Output 7	Output	

 Table 2-14:
 Digital / Analog IO Connector Pinout

Mating Connector	Aerotech P/N	Third Party P/N	
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF	
Backshell	ECK00656	Amphenol 17E-1726-2	

2.4.1. Analog Input 1

Analog Input 1 is a differential input. To interface to a single-ended (non-differential) voltage source, connect the signal common of the source to the negative input and the analog source signal to the positive input. A floating signal source should be referenced to the ground as shown in Figure 2-21.

Table 2-15: Analog Input 1 Specifications

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	12 bits	
Resolution (volts)	4.88 mV	
1. Signals outside of this range may damage the input		

Table 2-16: Analog Input Pins on the Digital/Analog I/O Connector

Pin#	Description	In/Out/Bi
1	Analog Input 1+ (Differential)	Input
2	Analog Input 1- (Differential)	Input
15	Ground	N/A

Figure 2-21: Analog Input 1

2.4.2. Analog Output 1

The ground pin is set to zero when power is first applied to the system or during a system reset.

Table 2-17: Analog Output 1 Specifications

Specification	Value
Output Voltage	-5 V to +5 V
Output Current	5 mA
Resolution (bits)	16 bits
Resolution (volts)	153 μV

Table 2-18: Analog Output Pins on the Digital/Analog I/O Connector

Pin#	Description	In/Out/Bi
14	Analog Output 1	Output
15	Ground	N/A

Figure 2-22: Analog Output 1

2.4.3. Digital Outputs

The digital outputs are optically-isolated and can be connected in sourcing or sinking configurations. The digital outputs are designed to connect to other ground referenced circuits and are not intended to provide high-voltage isolation.

The outputs are software-configurable and must be connected in either all sinking or all sourcing mode. Figure 2-23 and Figure 2-24 illustrate how to connect to an output in current sourcing and current sinking modes.

The opto-isolator's common connections can be directly connected to the drive's power supply; however, doing so will effectively defeat the isolation and will reduce noise immunity.

NOTE: Power supply connections must always be made to both the Output Common Plus (OP) and Output Common Minus (OM) pins as shown in Figure 2-23 and Figure 2-24.

Table 2-19: Digital Output Specifications

Opto Device Specifications	Value
Maximum Voltage	24 V maximum
Maximum Sink/Source Current	60 mA/channel @ 50°C
Output Saturation Voltage	2.75 V at maximum current
Output Resistance	33 Ω
Rise / Fall Time	250 usec (typical)
Reset State	Output Off (High Impedance State)

Table 2-20: Digital Output Pins on the Digital/Analog I/O Connector

Pin#	Description	In/Out/Bi
9	Digital Output Common +	Input
10	Digital Output 0	Output
11	Digital Output 1	Output
12	Digital Output 2	Output
13	Digital Output 3	Output
21	Digital Output Common -	Input
22	Digital Output 4	Output
23	Digital Output 5	Output
24	Digital Output 6	Output
25	Digital Output 7	Output

Suppression diodes must be installed on outputs driving relays or other inductive devices. This protects the outputs from damage caused by inductive spikes. Suppressor diodes, such as the 1N914, can be installed on all outputs to provide protection. It is important that the diode be installed correctly (normally reversed biased). Refer to Figure 2-24 for an example of a current sinking output with diode suppression and Figure 2-23 for an example of a current with diode suppression.

A DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-24: Digital Outputs Connected in Current Sinking Mode

2.4.4. Digital Inputs

The digital inputs are opto-isolated and may be connected to current sourcing or current sinking devices, as shown in Figure 2-25 and Figure 2-26. These inputs are designed to connect to other ground-referenced circuits and are not intended for high-voltage isolation.

Inputs 0-3 and inputs 4-7 have separate common inputs (refer to Table 2-22). Each 4-bit bank of inputs must be connected in the same configuration (sinking or sourcing). Bank 1 can be connected differently from Bank 2, however.

The opto-isolator's common connections can be directly connected to the drive's power supply; however, doing so will effectively defeat the isolation and will reduce noise immunity.

Table 2-21: Digita	Input Specifications
--------------------	----------------------

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V	1 mA	200 usec	2000 usec
+24 V	6 mA	4 usec	1500 usec

Table 2-22:	Digital Input Pins on the Digital/Analog I/O Connector

Pin#	Description	In/Out/Bi
4	Input Common for Digital Inputs 0 - 3	Input
5	Digital Input 0	Input
6	Digital Input 1	Input
7	Digital Input 2	Input
8	Digital Input 3	Input
16	Input Common for Digital Inputs 4 - 7	Input
17	Digital Input 4	Input
18	Digital Input 5	Input
19	Digital Input 6	Input
20	Digital Input 7	Input

Figure 2-25: Digital Inputs Connected to a Current Sourcing Device

Figure 2-26: Digital Inputs Connected to a Current Sinking Device

2.5. Position Synchronized Output (PSO)

The PSO signal is available when the auxiliary marker is configured as an output using the PSOOUTPUT CONTROL command. Refer to the Help file for more information.

The PSO output signal uses an isolated digital switch that closes when a PSO fire event occurs. When the drive is reset or after initial power up, Pins 1 and 6 are a high impedance.

Table 2-23: PSO Specifications

Specification	Value
Maximum Voltage	24 V
Current	250 mA
Latency	120 ns
Maximum Frequency	12.5 MHz

Table 2-24: PSO Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	PSO-	Bidirectional	
2	Cosine+	Bidirectional	
3	Cosine-	Bidirectional	
4	Sine+	Bidirectional	
5	Reserved	N/A	Sõ
6	PSO+	Bidirectional)))
7	+5 Volt (500 mA max)	Output	
8	Common	Output	
9	Sine-	Bidirectional	

Table 2-25: Mating Connector for the PSO Connector

Mating Connector	Aerotech P/N	Third Party P/N
9-Pin D-Connector	ECK00137	FCI# DE09P064TXLF
Backshell	ECK01021	Amphenol 17E-1724-2

Figure 2-27: PSO Outputs Connected in Sourcing Mode

Figure 2-28: PSO Outputs Connected in Sinking Mode

2.6. DVI Connector

The DVI connector is a video display interface.

Figure 2-29: DVI Connector Location

2.7. USB Connectors

The HEX RC supplies four USB ports for peripheral device connection.

Figure 2-30: USB 2.0 Connector Location

Figure 2-31: USB 3.0 Connector Locations

2.8. Ethernet Connector

The Ethernet connector provides a 10/100 Ethernet connection to the HEX RC controller. This may be connected directly to a hub or switch, or to a PC using a crossover cable. This port is viewed by the supplied software applications to communicate with the controller. It may also be configured for Modbus TCP/IP or simple ASCII communications.

Table 2-26:	Ethernet Cable Specifications
-------------	-------------------------------

	· ·				
Cable Name	Length				
ENET-XOVER-X		x = 9, 1	5, 30, 45, 60, 7	5, 100 or 150	decimeters
		Crossover C	AT5 cable		Ethernet I/O Module or PC
	© 0	Et standard CAT5 cable	hernet HUB or S	Switch standard CAT5 cable	Ethernet I/O Module or PC
	Fiau	ure 2-32: Et	hernet Connec	ction	

2.9. FireWire® Connector

The FireWire interface allows the user to control up to 26 additional A3200 drives.

Table 2-27: FireWire Repeaters (for cables exceeding 4.5 m (15 ft) specification)

Part Number	Description
NFIRE-RPTR-1394A-1394A	Extender for copper cable lengths greater than 4.5 m (15 feet).
NFIRE-RPTR-1394A-GOF	Glass Optical Fiber FireWire Repeater, Qty. 1 (Fiber Cable not included)

Table 2-28:	FireWire	Cables	(copper	and o	lass t	fiber)
			(

Part Number	Description
NCONNECT-60	6 m (20 ft) long, 6 pin to 6 pin
NCONNECT-45	4.5 m (15 ft) long, 6 pin to 6 pin
NCONNECT-30	3 m (10 ft) long, 6 pin to 6 pin
NCONNECT-15	1.5 m (5 ft) long, 6 pin to 6 pin
NCONNECT-9	0.9 m (3 ft) long, 6 pin to 6 pin
NCONNECT-10000-GOF	10 m (32.8 ft), glass fiber optical cable
NCONNECT-15000-GOF	15 m (49.2 ft), glass fiber optical cable
NCONNECT-20000-GOF	20 m (65.6 ft), glass fiber optical cable
NCONNECT-30000-GOF	30 m (101.7 ft), glass fiber optical cable

Figure 2-33: FireWire Connector Location

Chapter 3: Options

Table 3-1 provides a description of the various HEX RC options.

Table 3-1	Ontions and	Canabilities
		Capabilities

Option	Section	Description / Capabilities
-SL1	Section 1.2. Rack mount slides	
-EST3	Section 3.1.	ESTOP Sense Input EN ISO 13849-1, Category 2, Category 3
MPGA	Section 3.2.	Six-Axis Jog Pendant.

3.1. Emergency Stop (-EST3)

-EST3 is an integrated emergency stop hardware option available on the HEX RC. -EST3 uses two relays in series to disconnect the motor power supply from the drive modules and dissipates the stored energy in the motor power supply. User connections are made via the optional 15D ESTOP connector.

All relays are force guided and have a monitor contact.

WARNING: The machine integrator, OEM, or end user is responsible for performing the design, integration, and test of the safety system in accordance with the relevant safety standards. This responsibility includes the use of safety monitoring devices, interlocks, switches, light curtains and all other means of providing operator protection.

Figure 3-1: ESTOP Option Interface

Table 3-2:	Mating Connector Part Numbers for the ESTOP Connector

Mating Connector	Aerotech P/N	Third Party P/N
15-Pin D-Connector	ECK00100	Amphenol DA15P064TXLF
Backshell	ECK01022	Amphenol 17E-1725-2

The -EST3 option can be used to provide performance in accordance with EN ISO 13849-1 as shown in Table 3-3.

Table 3-3: ESTOP Safety Ratings

Option	Relays	EN ISO 13849-1
-EST3	2 force guided relays with monitor contracts	Category 3, PL d

Table 3-4: ESTOP Relay Specifications

ESTOP3 CR1 and CR2		
Rolov Dort Number	Aerotech: ECW01107	
Relay Part Nulliber	Sprecher & Schuh: CA7-16E-M31-24E	
AC-1 (resistive load)	Rating of 32 A	
Turn On	The coil requires 17.0 W to turn on (which is equal to 700 mA @ 24 V)	
On / Holding	The coil requires 1.7 W on (holding) current (which is equal to 70 mA @ 24 V)	

Figure 3-2: -EST3 Option Schematic

HEX RC Hardware Manual

3.2. MPGA Connector

The MPGA is the connector interface for a six-axis jog pendant. The MPG input device provides the capability to manually fine-position up to six axes. Refer to the MPG hardware manual for more information (http://www.aerotechmotioncontrol.com/manuals/index.aspx).

The ESTOP switch on the MPG will have no functionality without the -EST3 option (refer to Figure 3-3).

Figure 3-4: MPGA Connector Location

Pin#	Description	Connector
1	Shield	
2	Common	
3	A	
4	В	
5	24 V Input	
6	Y Axis Switch	\bigcirc
7	4 Axis Switch	
8	6 Axis Switch	• 14
9	x10 Mult Switch	• •
10	Reserved	• •
11	Reserved	••
12	ESTOP NC1	• •
13	ESTOP NC2	•
14	Reserved	•
15	5 V Input	• •
16	A-N	•
17	B-N	•
18	X Axis Switch	25
19	Z Axis Switch	13
20	5 Axis Switch	
21	x1 Mult Switch	
22	x100 Mult Switch	
23	Reserved	
24	ESTOP NC1	
25	ESTOP NC2	

Table 3-5: MPGA Connector Pinout

Chapter 4: Maintenance

Aerotech does not recommend opening the HEX RC to access internal boards, fuses, or components. Contact the factory for more details.

DANGER: Always disconnect the Mains power connection before opening the HEX RC chassis.

DANGER: Before performing any tests, be aware of lethal voltages inside the controller and at the input and output power connections. A qualified service technician or electrician should perform these tests.

4.1. Power Board Assembly

The HEX RC is factory wired for either 100/200 VAC or 115/230 VAC input voltage.

DANGER: Always disconnect the Mains power connection before opening the HEX RC chassis. Fuses must not be changed with Mains power applied to unit.

Figure 4-1: Power Board

Table 4-1:	Component Select
------------	------------------

Component	100/115 VAC	200/230VAC	Bipolar	Unipolar
SW1, SW2	В	A	-	-
BW4, BW6	-	-	Factory Select	Installed
BW5	-	-	Installed	Factory Select

4.2. Preventative Maintenance

The HEX RC and external wiring should be inspected monthly. Inspections may be required at more frequent intervals, depending on the environment and use of the system. The table below lists the recommended checks that should be made during these inspections.

DANGER: Disconnect power to HEX RC main supply before servicing.

DANGER: Disconnect power to avoid shock hazard.

Table 4-2: Preventative Maintenance

Check	Action to be Taken
Visually Check chassis for loose or damaged parts	Parts should be repaired as required. If internal
/ hardware.	damage is suspected, these parts should be
Note: Internal inspection is not required.	checked and repairs made if necessary.
Inspect cooling vents.	Remove any accumulated material from vents.
Check for fluids or electrically conductive material	Any fluids or electrically conductive material must
exposure.	not be permitted to enter the HEX RC.
	Tighten or re-secure any loose connections.
Visually inspect all cables and connections.	Replace worn or frayed cables. Replace broken
	connectors.

Cleaning

The HEX RC chassis can be wiped with a clean, dry, soft cloth. The cloth may be slightly moistened if required with water or isopropyl alcohol to aid in cleaning if necessary. In this case, be careful not to allow moisture to enter the HEX RC or onto exposed connectors / components. Fluids and sprays are not recommended because of the chance for internal contamination, which may result in electrical shorts and/or corrosion. The electrical power must be disconnected from the HEX RC while cleaning. Do not allow cleaning substances or other fluids to enter the HEX RC or to get on to any of the connectors. Avoid cleaning labels to prevent removing the label information.

This page intentionally left blank.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit https://www.aerotech.com/global-technical-support.aspx for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO	CHINA	GERMANY
Aerotech, Inc.	Aerotech China	Aerotech Germany
Global Headquarters	Full-Service Subsidiary	Full-Service Subsidiary
Phone: +1-412-967-6440	Phone: +86 (21) 5508 6731	Phone: +49 (0)911 967 9370
Fax: +1-412-967-6870		Fax: +49 (0)911 967 93720

UNITED KINGDOM

Aerotech Taiwan Full-Service Subsidiary Phone: +886 (0)2 8751 6690

TAIWAN

Aerotech United Kingdom Full-Service Subsidiary Phone: +44 (0)1256 855055 Fax: +44 (0)1256 855649

Have your customer order number ready before calling.

Appendix B: Revision History

Revision	Description
1.04.00	Updated Agency Approvals
	Updates have been made to the following section:
1 02 00	Table 1-1
1.03.00	Table 1-2
	Table 1-3
1 02 00	Updates have been made to the following section:
1.02.00	Table 1-2
	Updates have been made to the following sections:
	General product update:
	 back panel connector layout has changed
1.01.00	 lifting instructions have been updated
	EU Declaration of Conformity
	Table 1-2
	 Section 2.5. Position Synchronized Output (PSO)
1.00.00	New manual

This page intentionally left blank.

Index		
		Auxiliary Power Outputs
-		В
-EST3	58	Brushless Motor
-EST3 Option Schematic	59	Connection Schematic
-EST3 with MPGA32 Option Schematic	60	Connections
-FC1	29	Phasing
-FC2	30	Powered Phasing
-FC3	29	Unpowered Phasing
-FC4	30	Brushless Motor Phasing
1		Brushless Motor Phasing Goal
10/100 Ethernet	55	С
2		Chassis Electrical Specifications
2014/35/EU	7	Chassis Layout
A AC Device Compositions	25	Check chassis for loose or damaged parts / hardware
AC Power Cord Wiring Specifications	25 25	Check for fluids or electrically conductive material exposure
AC Power Input	17	Conducted Noise
Altitude	21	Connector
Ambient Temperature	21	Motor Feedback
Analog Encoder Interface	30	Continuous Output Current specifications
Analog Encoder Phasing Reference Diagram	30	D
Analog Encoder Signals Schematic	31	DC Brush Motor
Analog Encoder Specifications	30	Connection Schematic
Analog Input 1 (Digital/Analog I/O Connector)	44	Connections
Analog Input 1 Specifications	44	Phasing
Analog Input Pins on the Digital/Analog I/O	11	Declaration of Conformity
Analog Output 1 (Digital/Analog I/O Connector)	45	Digital / Analog IO Connector Pinout
Analog Output 1 Specifications	45	Digital Input Pins on the Digital/Analog I/O
Analog Output Pins on the Digital/Analog I/O	10	
Connector	45	
ASCII	55	
Audible Noise	21	Device Schematic

Digital Inputs Connected to a Current Sourcing Device Schematic	49
Digital Output Pins on the Digital/Analog I/O Connector	46
Digital Output Specifications	46
Digital Outputs (Digital/Analog I/O Connector)	46
Digital Outputs Connected in Current Sinking Mode Schematic	47
Digital Outputs Connected in Current Sourcing Mode Schematic	47
dimensions	19
Drive and Software Compatibility	22
DVI	53
E	
Efficiency of Power Amplifier specifications	18
Electrical Installation	24
Electrical Noise (Minimizing)	26
Electrical Specifications 17	7-18
Encoder	
RS-422	29
Square Wave	29
Encoder and Hall Signal Diagnostics	39
Encoder Inputs	28
Encoder Phasing	32
Encoder Phasing Reference Diagram	32
Encoder Pins on the Motor Feedback Connector	- 28
End of Travel Limit Input Connections	35
End Of Travel Limit Input Interface	35
End of Travel Limit Input Pins on the Motor Feedback Connector	35
End of Travel Limit Inputs Schematic	35
End Of Travel Limit Phasing	36
Environmental Specifications	21
ESTOP	58
Mating Connector Part Numbers	58

Relay Specifications	59		
Safety Ratings	59		
ESTOP with MPGA32 Option Schematic	60		
Ethernet	55		
Ethernet Cable	55		
F			
Feature Summary	14		
FireWire Cables	56		
FireWire Repeaters	56		
Functional Diagram	16		
G			
Global Technical Support	2		
н			
Hall-Effect Feedback Pins on the Motor Feedback Connector	33		
Hall-Effect Inputs	33		
Hall-Effect Inputs Schematic	33		
Humidity	21		
I			
I/O and Signal Wiring Recommended Wire Sizes	26		
I/O and Signal Wiring Requirements	26		
I/O and Signal Wiring Specifications	26		
Inputs			
Analog (Digital/Analog I/O Connector)	44		
Digital (Digital/Analog I/O Connector)	48		
Inrush Current	17		
inspect	23		
inspect all cables and connections	65		
Inspect cooling vents	65		
Inspection	65		
Installation and Configuration	23		
ISO 13849-1 & -2	7		
Isolation	18		
J		MPGA Connector Pinout	62
--	----------	---	----------
Jog Pendant	61	N	
L		Noise	21
Leakage Current	17	Noise (Minimizing)	26
Limit Input Diagnostic Display	36	0	
Line Driver Encoder Interface	29	Opto-Isolated Inputs (Digital/Analog I/O	
м		Connector)	48
Main AC Input Power Voltages and Current Requirements	25	Opto-Isolated Outputs (Digital/Analog I/O Connector)	46
Maintenance	63	Output Voltage specifications	18
Mating Connector		Outputs	
PSO	50	Analog (Digital/Analog I/O Connector)	45
Mating Connector Part Numbers		Digital (Digital/Analog I/O Connector)	46
ESTOP	58	Р	
Motor Feedback Connector	27	Peak Output Current specifications	18
Mechanical Dimensions	19	Pendant	61
Minimizing Electical Noise	26	Phasing	
Minimum Load Inductance specifications	18	Brushless Motor	38
Modbus TCP/IP	55	DC Brush Motor	41
Modes of Operation	18	Encoder	32
Motor Feedback Connector	27	End Of Travel Limits	36
Encoder Pins	28	Powered Brushless Motor	39
End of Travel Limit Input Pins	35	Stepper Motor	42
Hall-Effect Feedback Pins	33	Unpowered Brushless Motor	40
Mating Connector Part Numbers	27	Pinout	
Motor Output Pins	37	Analog Input Pins (Digital/Analog I/O Connector)	44
Pinout	27	Analog Output Pins (Digital/Analog I/O	
Thermistor Input Pin	34	Connector)	45
Motor Output Connection Pins on the Motor	27	Digital / Analog IO Connector	43
Motor Output Interface	37 37	Digital Input Pins (Digital/Analog I/O Connector)	48
Motor Phasing Oscilloscope Example	40	Digital Output Pins (Digital/Analog I/O	16
MPGA Connector	61	Motor Feedback Connector	-0 27
			<u> </u>

MPGA Connector	62	DC Brush Motor Connection	41
PSO Connector	50	Digital Inputs Connected to a Current Sinking)
Pollution	21	Device	49
Position Feedback in the Diagnostic Display	32	Digital Inputs Connected to a Current Sourcing Device	49
Position Synchronized Output (PSO)	50	Digital Outputs Connected in Current Sinking	ļ
Power Amplifier Bandwidth specifications	18	Mode	47
Powered Brushless Motor Phasing	39	Digital Outputs Connected in Current Sourcing Mode	47
Preventative Maintenance	65	End of Travel Limit Inputs	35
Protection	17	ESTOP (-EST3) Option	59
Protective Features	18	ESTOP with MPGA32 Option	60
PSO	50	Hall-Effect Inputs	33
PSO Connector Pinout	50	Stepper Motor Connection	42
PSO Specifications	50	Thermistor Input	34
PWM Switching Frequency specifications	18	Servo Amplifier Electrical Specifications	18
Q		shipping damage	23
Quick Installation Guide	11	Specifications	
Quick Start Connections	11	AC Power Cord Wiring	25
R		Analog Encoder	30
Radiated Noise	26	Analog Input 1	44
Recommended Wire Sizes		Analog Output 1	45
I/O and Signal Wiring	26	Digital Inputs	48
Requirements		Digital Outputs	46
Main AC Input Power Voltages and Current	25	ESTOP Relay	59
RS-422 Encoder	29	Ethernet Cable	55
RS-422 Encoder Specifications	29	I/O and Signal Wiring	26
S		PSO	50
Safety Procedures and Warnings	9	RS-422 Encoder	29
Schematic		Square Wave Encoder	29
-EST3 Option	59	Square Wave Encoder	29
-EST3 with MPGA32 Option	60	Square Wave Encoder Specifications	29
Analog Encoder Signals	31	Stepper Motor	_0
Brushless Motor Connection	38	Connection Schematic	42

Connections	42				
Phasing	42				
Support	2				
System Noise					
т					
Technical Support	2				
Thermistor Input					
Thermistor Input Pin on the Motor Feedback Connector	34				
Thermistor Input Schematic	34				
U					
unit weight	19				
Unpacking the Chassis					
Unpowered Brushless Motor Phasing					
Unpowered Motor and Feedback Phasing					
USB 2.0	54				
USB 3.0					
Use					
User Power Supply specifications	18				
V					
video display	53				
w					
Warnings	9				
Warranty and Field Service					

This page intentionally left blank.