今 AEROTECH

PRO190SV Hardware Manual

Revision: 1.01.00

Global Technical Support

Go to www.aerotech.com/global-technical-support for information and support about your Aerotech products. To get help immediately, contact a service office or your sales representative (Support@aerotech.com). Include your customer order number in your email.

Software Support: Aerotech offers a range of software packages readily available for download. Free software is available for instant download. Chargeable software requires a current software key. Link: Software Downloads

Software Activation: The following link provides information and resources to activate your Aerotech software. Link: Software Activation

Manuals, Help Files, and Cable Drawings: Browse a directory of manuals, help files, and cable drawings for Aerotech software and hardware products. Link: Browse Manuals, Help Files, and Cable Drawings

Frequently Asked Questions: The Frequently Asked Questions (FAQs) section provides answers to most common questions about Aerotech products. Link: Product FAQs

Product Training: View training information and schedule a training class. Link: Training Sessions
Request Product Repair or Return: We offer complete service and repair services for all of our products. Learn more about our pricing and warranties, plus access the forms required for many Global Technical Support port requests. Link: Repair \& Return

Remote and Field Service Technical Support: Schedule a remote session now or a field service appointment. Link: Remote Technical Support

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2019-2020, Aerotech, Inc., All rights reserved.
Table of Contents
PRO190SV Hardware Manual 1
Table of Contents 3
List of Figures 4
List of Tables 5
Safety Procedures and Warnings 7
EU Declaration of Incorporation 9
Chapter 1: Overview 11
1.1. Environmental Specifications 12
1.2. Accuracy and Temperature Effects 12
1.3. Basic Specifications 13
1.4. Vacuum Operation 14
Chapter 2: Mechanical Specifications and Installation 15
2.1. Unpacking and Handling the Stage 15
2.2. Dimensions 17
2.3. Securing the Stage to the Mounting Surface 18
2.4. Attaching the Payload to the Stage 20
Chapter 3: Electrical Specifications and Installation 23
3.1. Motor and Feedback Connectors 24
3.2. Motor and Feedback Wiring 28
3.3. Motor and Feedback Specifications 31
3.4. Limits, Marker, and Machine Direction 33
3.5. Motor and Feedback Phasing 34
Chapter 4: Maintenance 37
4.1. Service and Inspection Schedule 37
4.2. Cleaning and Lubrication 38
4.3. Troubleshooting 40
Appendix A: Warranty and Field Service 41
Appendix B: Revision History 43
Index 45

List of Figures

Figure 2-1: Lifting Features (PRO225SV shown) 16
Figure 2-2: PRO190SV Dimensions 17
Figure 2-3: Mounting Holes [QTY. 4] (PRO165SV shown) 19
Figure 2-4: Cantilevered Load Capability 20
Figure 2-5: Load Curve (PRO165SV shown) 21
Figure 2-6: Load Torque Equation 21
Figure 3-1: Motor and Feedback Wiring [25-Pin Connector] 28
Figure 3-2: Motor and Feedback Wiring [15-Pin Connector for -E3, -E4, -E5, and -E6] 29
Figure 3-3: Motor and Feedback Wiring [15-Pin Connector for -E7] 30
Figure 3-4: Machine Direction 33
Figure 3-5: Hall Phasing 34
Figure 3-6: Analog Encoder Phasing Reference Diagram 35
Figure 3-7: Encoder Phasing Reference Diagram (Standard) 35
Figure 4-1: Hardcover Removal (PRO165SV shown) 39

List of Tables

Table 1-1: Model Numbers and Ordering Options 11
Table 1-2: Environmental Specifications 12
Table 1-3: PRO190SV Series Specifications 13
Table 2-1: Stage to Mounting Surface Hardware 18
Table 3-1: Motor Connector Pinout 25
Table 3-2: Mating Connector Part Numbers for the Motor Connector 25
Table 3-3: 25-Pin Feedback Connector Pinout 26
Table 3-4: Mating Connector Part Numbers for the Feedback Connector 26
Table 3-5: 15-Pin Direct Feedback Connector Pinout [-E3, -E4, -E5, -E6] 27
Table 3-6: 15-Pin Direct Feedback Connector Pinout [-E7] 27
Table 3-7: Mating Connector Part Numbers for the Direct Feedback Connector 27
Table 3-8: Feedback Specifications 31
Table 3-9: Motor Specifications 32

Safety Procedures and Warnings

This manual tells you how to carefully and correctly use and operate the PRO190SV.

- Read all parts of this manual before you install or operate the PRO190SV or before you do maintenance to your system.
- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- Aerotech continually improves its product offerings; listed options may be superseded at any time. All drawings and illustrations are for reference only and were complete and accurate as of this manual's release. Refer to www.aerotech.com for the most up-to-date information.
If you do not understand the information in this manual, contact Aerotech Global Technical Support.

NOTE: This product is intended for light industrial manufacturing or laboratory use.

D AN G ER: This product contains potentially lethal voltages. To reduce the possibility of electrical shock, bodily injury, or death the following precautions must be followed.

1. Access to the PRO190SV and component parts must be restricted while connected to a power source.
2. Do not connect or disconnect any electrical components or connecting cables while connected to a power source.
3. Disconnect electrical power before servicing equipment.
4. All components must be properly grounded in accordance with local electrical safety requirements.
5. Operator safeguarding requirements must be addressed during final integration of the product.

W AR NING: To minimize the possibility of electrical shock, bodily injury or death the following precautions must be followed.

1. Moving parts can cause crushing or shearing injuries. Access to all stage and motor parts must be restricted while connected to a power source.
2. Cables can pose a tripping hazard. Securely mount and position all system cables to avoid potential hazards.
3. Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.
4. The PRO190SV must be mounted securely. Improper mounting can result in injury and damage to the equipment.
5. Use care when moving the PRO190SV. Lifting or transporting the PRO190SV improperly can result in injury or damage to the PRO190SV.
6. The motor case temperature may exceed $75^{\circ} \mathrm{C}$.
7. Operators must be trained before operating this equipment.
8. All service and maintenance must be performed by qualified personnel.

This page intentionally left blank.

EU Declaration of Incorporation

Manufacturer: Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2811
USA

herewith declares that the product:
PRO190SV Stage
is intended to be incorporated into machinery to constitute machinery covered by the Directive 2006/42/EC as amended;
and that the following harmonized European standards have been applied:
EN ISO 12100:2010
Safety of machinery - Basic concepts, general principles for design
EN 60204-1:2010
Safety of machinery - Electrical equipment of machines - Part 1: General requirements and further more declares that
it is not allowed to put the equipment into service until the machinery into which it is to be incorporated or of which it is to be a component has been found and declared to be in conformity with the provisions of the Directive 2006/42/EC and with national implementing legislation, for example, as a whole, including the equipment referred to in this Declaration.
This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

> EU 2015/863 Directive, Restricted Substances (RoHS 3)

Authorized Representative:	Simon Smith, European Director
Address:	Aerotech Ltd
	The Old Brick Kiln, Ramsdell, Tadley
	Hampshire RG26 5PR
	UK

Name

Position
Location
Date

This page intentionally left blank.

Chapter 1: Overview

Table 1-1: Model Numbers and Ordering Options

PRO190SV Long-Travel Lift Stage	
Feedback (Required)	
-E1	Rotary incremental encoder, 1 Vpp
-E2	Rotary incremental encoder, digital RS-422
-E3	Direct linear encoder, $1 \mathrm{Vpp}+$ rotary encoder, 1 Vpp (dual-loop)
-E4	Direct linear encoder, $1 \mathrm{Vpp}+$ rotary encoder, digital RS-422 (dual-loop)
-E5	Direct linear encoder, digital RS-422 + rotary encoder, 1 Vpp (dual-loop)
-E6	Direct linear encoder, digital RS-422 + rotary encoder, digital RS-422 (dual-loop)
-E7	Absolute linear encoder + rotary encoder, 1 Vpp (dual-loop)
Tabletop (Optional)	
-TT3	Accessory tabletop with mounting for select rotary stages
Brake (Optional)	
-BK	Holding Brake
ThermoComp (Optional)	
-TCMP	ThermoComp integrated thermal compensation
Lifting Hardware (Optional)	
-LF	Hoist rings
Metrology (Required)	
-PL0	No metrology performance plots
-PL1	Metrology, uncalibrated with performance plots
-PL2	Metrology, calibrated (HALAR) with performance plots

1.1. Environmental Specifications

WARNING: Do not expose this product to environments or conditions outside of the listed specifications. Exceeding environmental or operating specifications can cause damage to the equipment.

Table 1-2: Environmental Specifications

Ambient Temperature	Operating: 10° to $35^{\circ} \mathrm{C}\left(50^{\circ}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$ The optimal operating temperature is $20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F} \pm 4^{\circ} \mathrm{F}\right)$. If at any time the operating temperature deviates from $20^{\circ} \mathrm{C}$ degradation in performance could occur.
	Operating: 20% to $60 \% \mathrm{RH}$
	Storage: 10% to $70 \% \mathrm{RH}$, non-condensing in original packaging. The stage should be packaged with desiccant if it is to be stored for an extended time.
Vibration	Operating: 0 m to $2,000 \mathrm{~m}(0 \mathrm{ft}$ to $6,562 \mathrm{ft})$ above sea level Contact Aerotech if your specific application involves use above $2,000 \mathrm{~m}$ or below sea level.
Protection Rating	Use the system in a low vibration environment. Excessive floor or acoustical vibration can affect system performance. Contact Aerotech for information regarding your specific application.
Use	The PRO190SV stages have limited protection against dust, but not water. This equates to an ingress protection rating of IP50.
	Indoor use only

1.2. Accuracy and Temperature Effects

The accuracy specification of PRO190SV series stages is measured 35 mm above the table with the stage in an unloaded condition. The stage is assumed to be fully supported by a mounting surface meeting or exceeding the specification in Section 2.3.

The accuracy specifications in Section 1.3. assume a $20^{\circ} \mathrm{C}$ operating environment.
If the temperature of the ball screw in the stage is not $20^{\circ} \mathrm{C}$, a scale error will occur. The speed and duty cycle of the stage have an effect on the temperature of the screw. Faster movement and higher duty cycle increase heat and change the accuracy of the stage. The thermal expansion coefficient of the screw is 11.7 ppm for each degree Celsius. For stages with a linear encoder, the scale will expand or contract at a rate of 10.1 ppm for each degree Celsius.

The ThermoComp ${ }^{\text {TM }}$ option uses the A3200 controller to sense and compensate for thermal changes. ThermoComp ${ }^{T M}$ compensates for self-heating and environmental temperature changes.

1.3. Basic Specifications

Resolution is dependent on pitch, encoder resolution, and controller interpolation.
Table 1-3: PRO190SV Series Specifications

		PRO190SV-035
Travel		35 mm
Accuracy ${ }^{(1)}$	Standard	$\pm 5 \mu \mathrm{~m}$
	Calibrated	$\pm 0.75 \mu \mathrm{~m}$
	Calibrated, Linear Encoder	$\pm 0.5 \mu \mathrm{~m}$
Resolution (Min. Incremental Motion)	Rotary Encoder ${ }^{(2)}$	$0.025 \mu \mathrm{~m}$
	Linear Encoder ${ }^{(3)}$	$0.010 \mu \mathrm{~m}$
Bidirectional Repeatability ${ }^{(1)}$	Rotary Encoder (2)	$\pm 0.5 \mu \mathrm{~m}$
	Linear Encoder ${ }^{(3)}$	$\pm 0.15 \mu \mathrm{~m}$
Straightness		$\pm 4 \mu \mathrm{~m}$
Pitch		$50 \mu \mathrm{rad}$ (10 arc sec)
Roll		$50 \mu \mathrm{rad}(10 \mathrm{arc} \mathrm{sec})$
Yaw		$25 \mu \mathrm{rad}$ (5 arcsec)
Maximum Speed ${ }^{(4)}$		$10 \mathrm{~mm} / \mathrm{s}$
Load Capacity ${ }^{(5,6)}$		40 kg
Stage Mass ${ }^{(7)}$		10.2 kg
Material		Anodized Aluminum
NOTE: Specifications are for single-axis systems measured 35 mm above the tabletop. Performance of multi-axis systems depends on payload and workpoint. Consult factory for details. 1. Certified with -PL1/-PL2 options. 2. With 1 Vpp amplified sine rotary encoder (-E1 feedback option) and linear amplifier. 3. With 1 Vpp amplified sine linear encoder (-E3, -E4 feedback options) and linear amplifier. 4. Requires the selection of an appropriate amplifier with sufficient voltage and current. 5. Axis orientation for on-axis loading is listed. 6. A holding brake (-BK option) is recommended when the payload exceeds 75% of the load capacity as a precaution in the event that power to the stage is unexpectedly lost. 7. Excludes tabletop and brake options.		

1.4. Vacuum Operation

Aerotech can specially prepare the PRO190SV for operation in vacuum environments. Aerotech offers two vacuum preparation options; one for low vacuum (for use in atmospheric pressures to $10^{-3} \mathrm{Torr}$) and one for high vacuum (preparation for environments from 10^{-3} to 10^{-6} Torr). As part of this preparation, attention to detail during modification, cleaning, and assembly results in products with optimal performance in vacuum applications.

To make sure that the PRO190SV will continue to perform well in the vacuum environment, use the guidelines that follow (in addition to standard handling, installation, and lubrication guidelines outlined in this manual).

- Do not remove the PRO190SV from its sealed bag until it is ready to use.
- Always handle the PRO190SV in a clean environment and use powder-free polyethylene gloves to prevent any contaminants from adhering to the surface of the PRO190SV.
- During installation, use cleaned, vented, stainless steel fasteners when securing the PRO190SV.
- Reduced air pressure eliminates significant convective heat transfer. This, coupled with the viscous vacuum-compatible lubricants, could result in excessive motor operating temperatures. Because of this, consider all continuous torque ratings to be 40 to 60% lower than the value specified for operation in normal atmospheric environment. Reduce motor usage accordingly.
- For vacuum applications, the recommended lubricant is a small quantity of Braycote® 602EF grease or a compatible substitute of equal quality.
- Baking vacuum components significantly reduces outgassing at initial pump-down to vacuum pressure and evaporates water vapor that impregnates porous surfaces on the aluminum and Teflon cables. Aerotech recommends that customers bake out vacuum systems when first installing them in the vacuum chamber. Contact Aerotech for bakeout temperatures and times for your application.

Chapter 2: Mechanical Specifications and Installation

W ARNING: PRO190SV installation must be in accordance to instructions provided by this manual and any accompanying documentation. Failure to follow these instructions could result in injury or damage to the equipment.

2.1. Unpacking and Handling the Stage

WARNING:It is the customer's responsibility to safely and carefully lift and move the PRO190SV.

- Secure all moving parts before lifting or moving the PRO190SV to a new location. Unsecured moving parts could shift and cause bodily injury.
- Improper handling could adversely affect the performance of the PRO190SV. Use care when moving the PRO190SV.

NOTE: If any damage has occurred during shipping, report it immediately.
Carefully remove the PRO190SV from its protective shipping container.

- Lift only by the base.
- Use lifting hardware if it has been provided (refer to Figure 2-1).
- Do not use the tabletop or cables as lifting points.
- For multi-axis assemblies, always lift the system by the lower axis.

Gently set the PRO190SV on a smooth, flat, and clean surface.
Before operating the PRO190SV, it is important to let it stabilize at room temperature for at least 12 hours. Allowing it to stabilize to room temperature will ensure that all of the alignments, preloads, and tolerances are the same as they were when tested at Aerotech. Use compressed nitrogen or clean, dry, oil-free air to remove any dust or debris that has collected during shipping.

Each PRO190SV has a label listing the system part number and serial number. These numbers contain information necessary for maintaining or updating system hardware and software. Locate this label and record the information for later reference.

Lifting Equipment

N OTE: After you remove the hoist rings, retain them for future use. In the event that the product requires service at the factory, the hoist rings should be reattached to ensure that the PRO190SV ships safely.

The lifting kit includes two hoist rings. If the stage is equipped with the optional tabletop (-TT3), the tabletop must be remove before you install the hoist rings. To install, thread hoist rings into the designated holes (refer to Figure 2-1). If the stage is part of a multi-axis system, attach the lifting hardware to the lower axis. The lifting hardware must be removed before you operate the stage.

Figure 2-1: Lifting Features (PRO225SV shown)

2.2. Dimensions

Figure 2-2: PRO190SV Dimensions

2.3. Securing the Stage to the Mounting Surface

W AR NING: The PRO190SV must be mounted securely. Improper mounting can result in injury and damage to the equipment.

WARNING: Make sure that all moving parts are secure before moving the PRO190SV. Unsecured moving parts may shift and cause bodily injury.

DANGER: PINCH POINT! Keep Hands Clear while the stage is in motion.

The mounting surface must be flat and have adequate stiffness to achieve the maximum performance from the PRO190SV stage. When it is mounted to a non-flat surface, the stage can be distorted while the mounting screws are tightened. This distortion will decrease overall accuracy. Adjustments to the mounting surface must be done before the stage is secured.

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Use precision flatstones on the mounting surface to remove any burrs or high spots. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry. Gently place the stage on the mounting surface.

NOTE: To maintain accuracy, the mounting surface must be flat to within $7.5 \mu \mathrm{~m}$.
Tightening torque values for the mounting hardware are dependent on the properties of the surface to which the stage is being mounted. Values provided in Table 2-1 are typical values and may not be accurate for your mounting surface.

Table 2-1: \quad Stage to Mounting Surface Hardware

Mounting Hardware	Typical Screw Torque
M6 x $25 \mathrm{~mm}[1 / 4-20 \times 1 \mathrm{in}]$ SHCS	$7 \mathrm{~N} \cdot \mathrm{~m}$

Figure 2-3: Mounting Holes [QTY. 4] (PRO165SV shown)

2.4. Attaching the Payload to the Stage

Inspect the mounting surface for dirt or unwanted residue and clean if necessary. Clean the mounting surface with a lint-free cloth and acetone or isopropyl alcohol and allow the cleaning solvent to completely dry.

Aerotech recommends that customers use a representative payload during start-up to prevent accidental damage to the stage and the payload. Proceed with the electrical installation and test the motion control system in accordance with the system documentation. Document all results for future reference. For information on electrical installation refer to Chapter 3 and the documentation delivered with the stage.

N OTE: If your PRO190SV was purchased with Aerotech controls, it might have been tuned with a representative payload based on the information provided at the time of order. If the PRO190SV is started up without a payload, the servo gains provided by Aerotech with the shipment may not be appropriate and servo instability can occur. Refer to the controller help file for tuning assistance.

The payload must be flat, rigid, and comparable to the stage in quality to maintain optimum performance.
Applied loads should be symmetrically distributed whenever possible (i.e., the payload should be centered on the stage table and the entire stage should be centered on the support structure).

NOTE: For valid system performance, the mounting interface should be flat within $12 \mu \mathrm{~m}$.
For a cantilevered load, measure the cantilever length and then find the corresponding load value in Figure 24.

Figure 2-4: Cantilevered Load Capability

Figure 2-5: Load Curve (PRO165SV shown)
The approximate torque required to turn the ball screw of PRO190SV series stages can be found from Figure 2-4 or the equation that follows:

$$
\text { Torque }_{\text {REQ }}=\frac{(\text { AxialLoad }) \times(\text { LeadofScrew })}{2 \times \pi x(\text { Efficiency })}
$$

Figure 2-6: Load Torque Equation
For PRO190SV series stages, the ball screw efficiency is rated at 90% (0.90).
The maximum axial load carrying capacity of PRO190SV stages is 40 kg .

Chapter 3: Electrical Specifications and Installation

WARNING: Electrical installation must be performed by properly qualified personnel.

Aerotech motion control systems are adjusted at the factory for optimum performance. When the PRO190SV is part of a complete Aerotech motion control system, setup usually involves connecting the PRO190SV to the appropriate drive chassis with the cables provided. Labels on the system components usually indicate the appropriate connections.

If system level integration was purchased, an electrical drawing showing system interconnects has been supplied with the system (separate from this documentation).

The electrical wiring from the motor and encoder are integrated at the factory. Refer to the sections that follow for standard motor wiring and connector pinouts.

DANGER: Remove power before connecting or disconnecting electrical components or cables. Failure to do so could cause electric shock or damage to the equipment.

WARNIN G: Operator access to the base and tabletop must be restricted while connected to a power source. Failure to do so could expose the operator to electrical shock or mechanical dangers.

NOTE : Refer to the controller documentation to adjust servo gains for optimum velocity and position stability.

3.1. Motor and Feedback Connectors

Stages equipped with standard motors and encoders come from the factory completely wired and assembled.

N OTE : Refer to the other documentation accompanying your Aerotech equipment. Call your Aerotech representative if there are any questions on system configuration.

The protective ground connection of the PRO190SV provides motor frame ground protection only. Additional grounding and safety precautions are required for applications requiring access to the stage while it is energized. The System Integrator or qualified installer is responsible for determining and meeting all safety and compliance requirements necessary for the integration of this stage into the final application.

D AN G ER: Remove power before connecting or disconnecting electrical components or cables. Failure to do so could cause electric shock or damage to the equipment.

WARNING: The protective ground connection must be properly installed to minimize the possibility of electric shock.

WARNING: Operator access to the base and tabletop must be restricted while connected to a power source. Failure to do so could expose the operator to electrical shock or mechanical dangers.

CAUTION: The stage controller must provide over-current and over-speed protection. Failure to do so could cause electric shock or damage to the equipment.

Table 3-1: Motor Connector Pinout

Pin	Description	Connector
Case	Shield Connection	
A1	Motor Phase A	
A2	Motor Phase B	
A3	Motor Phase C	
1	Reserved	
2	Reserved	
3	Reserved	
4	Reserved	
5	Reserved	
A4	Frame Ground (motor protective ground)	

Table 3-2: \quad Mating Connector Part Numbers for the Motor Connector

Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK00656	Amphenol \#17E-1726-2
Sockets [QTY. 4]	ECK00659	ITT Cannon \#DM53744-6
Connector	ECK00657	ITT Cannon \#DBM9W4SA197

Table 3-3: $\quad 25-$ Pin Feedback Connector Pinout

Pin	Description	Connector
Case	Shield Connection	
1	Reserved	
2	Over-Temperature Thermistor sensor	
3	+5 V power supply	
4	Reserved	
5	Hall Effect sensor, phase B	
6	Marker-N	
7	Marker	
8	Reserved	$14 \bullet^{1}$
9	Reserved	-
10	Hall Effect sensor, phase A	-
11	Hall Effect sensor, phase C	\bullet
12	CW/+LMT	$\stackrel{\bullet}{\bullet}$
13	Brake - ${ }^{(1)}$	- ${ }^{\circ}$
14	Cosine	\bullet -
15	Cosine-N	$\stackrel{\circ}{\bullet}$
16	+5 V power supply	- ${ }^{\circ}$
17	Sine	$\stackrel{\circ}{25} \stackrel{\circ}{ } 13$
18	Sine-N	
19	Reserved	
20	Common ground	
21	Common ground	
22	Reserved	
23	Reserved	
24	CCW/-LMT	
25	Brake + ${ }^{(1)}$	
1. with brake option only		

Table 3-4: Mating Connector Part Numbers for the Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK00656	Amphenol \#17E-1726-2
Connector	ECK00300	Amphenol \#DB25S064TLF

Table 3-5: 15-Pin Direct Feedback Connector Pinout [-E3, -E4, -E5, -E6]

Pin	Description (-E3, -E4, -E5, -E6)	Connector
Case	Shield Connection	
1	Reserved	
2	Common ground	
3	Reserved	
4	Marker-N	
5	Sine-N	\vdots
6	Cosine-N	\vdots
7	+5 V power supply	
8	Reserved	
9	Common ground	
10	Reserved	
11	Reserved	
12	Marker	
13	Sine	
14	Cosine	
15	Reserved	

Table 3-6: 15-Pin Direct Feedback Connector Pinout [-E7]

Pin	Description (-E7)	Connector
Case	Shield Connection	
1	Reserved	
2	Common ground	
3	Reserved	
4	+5 V power supply	
5	Absolute Data+ (Slo+)	
6	Reserved	\vdots
7	Reserved	\vdots
8	Absolute Clock+ (Ma+)	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Absolute Data- (Slo-)	
14	Reserved	
15	Absolute Clock-(Ma-)	

Table 3-7: Mating Connector Part Numbers for the Direct Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
Backshell	ECK01021	Amphenol \#17E-1725-2
Connector	ECK00326	Amphenol \#DA15S064TLF

3.2. Motor and Feedback Wiring

Shielded cables are required for the motor and feedback connections.

[^0]Figure 3-1: Motor and Feedback Wiring [25-Pin Connector]

Brake is optional.
Figure 3-2: Motor and Feedback Wiring [15-Pin Connector for -E3, -E4, -E5, and -E6]

(1) Brake is optional.

Figure 3-3: Motor and Feedback Wiring [15-Pin Connector for -E7]

3.3. Motor and Feedback Specifications

Table 3-8: Feedback Specifications

Hall-Effect Sensors Specifications	
Supply Voltage	$5 \mathrm{~V} \pm 5 \%$
Supply Current	50 mA
Output Type	Open Collector
Output Voltage	24 V max (pull up)
Output Current	5 mA (sinking)

Thermistor Specifications

Polarity	Logic "0" (no fault)
	Logic "1" (over-temperature fault)
Cold Resistance	$\sim 100 \Omega$
Hot Resistance	$\sim 10 \mathrm{~K}$
Note: 1 K pull-up to +5 V recommended.	

Encoder Specifications

Supply Voltage	$5 \mathrm{~V} \pm 5 \%$
Supply Current	250 mA Typical
Output Signals	Sinusoidal Type (Incremental Encoder): $1 \mathrm{~V}_{\mathrm{pk} \text {-pk }}$ into 120Ω Load (differential signals SIN+, SIN-, COS+, COS- are $.5 \mathrm{~V}_{\mathrm{pk}} \mathrm{pk}$ relative to ground.)
	Digital Output (Incremental Encoder): RS422/485 compatible
	Serial Output (Absolute Encoder): EnDat 2.2 with 36 bit word

Limit Switch Specifications				
Supply Voltage	$5 \mathrm{~V} \pm 5 \%$			
Supply Current	25 mA			
Output Type	Open Collector			
Output Voltage	5 V	\quad	Output Current	10 mA (sinking)
:---	:---			
Output Polarity	Normally Closed (NC) • Sinks current to ground (Logic "0") when not in limit - High impedance (Logic "1") when in limit - Requires external pull-up to $+5 \mathrm{~V}(10 \mathrm{k} \Omega$ recommended)			

Note: If the PRO190SV is driven beyond the electrical limit, it will encounter a mechanical stop. Impacting the mechanical stop could cause damage to the stage even at low speeds.

Brake Specifications	
Supply Voltage	24 VDC
Supply Current (typical)	0.81 A (Current required to release the brake and allow motion)

Table 3-9: Motor Specifications

		S-76-35
Performance Specifications ${ }^{(1,5)}$		
Winding Designation		-A
Stall Torque, Cont. ${ }^{(2)}$	$\mathrm{N} \cdot \mathrm{m}$	0.53
Peak Torque ${ }^{(3)}$	$\mathrm{N} \cdot \mathrm{m}$	2.1
Electrical Specifications ${ }^{(5)}$		
Winding Designation		-A
BEMF Const., line-line, Max	$\mathrm{V}_{\mathrm{pk}} / \mathrm{krpm}$	32.25
Continuous Current, Stall ${ }^{(2)}$	A_{pk}	2.75
	$\mathrm{A}_{\text {rms }}$	1.94
Peak Current, Stall ${ }^{(2)}$	A_{pk}	8.0
	$\mathrm{A}_{\text {rms }}$	5.7
Torque Constant ${ }^{(4,9)}$	$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}_{\mathrm{pk}}$	0.266
	$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}_{\text {rms }}$	0.377
Motor Constant ${ }^{(2,4)}$	$\mathrm{N} \cdot \mathrm{m} / \sqrt{ } \mathrm{W}$	0.083
Resistance, $25^{\circ} \mathrm{C}$, lineline	Ω	10.5
Inductance, line-line	mH	1.40
Maximum Bus Voltage	V_{DC}	340
Thermal Resistance	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1.83
Number of Poles	--	14
1. Performance is dependent upon heat sink configuration, system cooling conditions, and ambient temperature 2. Values shown @ $75^{\circ} \mathrm{C}$ rise above a $25^{\circ} \mathrm{C}$ ambient temperature, with housed motor mounted to a $250 \mathrm{~mm} \times 250 \mathrm{~mm} \times 6 \mathrm{~mm}$ aluminum heat sink 3. Peak force assumes correct rms current; consult Aerotech. 4. Torque constant and motor constant specified at stall 5. All performance and electrical specifications $\pm 10 \%$ 6. Specifications given are for the motor only. When integrated into a housing with bearings additional losses should be considered. 7. Maximum winding temperature is $100^{\circ} \mathrm{C}$ (thermistor trips at $100^{\circ} \mathrm{C}$) 8. Ambient operating temperature range $0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$; consult Aerotech for performance in elevated ambient temperatures 9. All Aerotech amplifiers are rated Apk; use torque constant in $\mathrm{N} \cdot \mathrm{m} / \mathrm{Apk}^{2}$ when sizing		

3.4. Limits, Marker, and Machine Direction

Aerotech stages are configured to have positive and negative "machine" directions. The machine direction defines the phasing of the feedback and motor signals and is dictated by the stage wiring (refer to Section 3.5. for Motor and Feedback phasing information). Programming direction of a stage is set by the controller that is used to move the stage. Programming direction is typically selectable in the controller, while machine direction is hardwired in the stage. Figure 3-4 shows the machine direction of PRO190SV stages.

Figure 3-4: Machine Direction

3.5. Motor and Feedback Phasing

Motor phase voltage is measured relative to the virtual wye common point.

Figure 3-5: Hall Phasing

Figure 3-6: Analog Encoder Phasing Reference Diagram

Figure 3-7: Encoder Phasing Reference Diagram (Standard)

This page intentionally left blank.

Chapter 4: Maintenance

N OTE: If the bearing area is not kept free of foreign matter and moisture, the performance and life expectancy of the stage will be reduced.

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

4.1. Service and Inspection Schedule

Inspect the PRO190SV at least once per month. A longer or shorter inspection interval may be required depending on the application and conditions, such as the duty cycle, speed, and environment.

In general, stages operating in a clean environment should be cleaned and lubricated annually or every 500 km (whichever comes first). For stages operating under conditions involving excessive debris, the stage should be cleaned every six months. For high-speed applications (those near max speed at a duty cycle of 50%), frequent maintenance with standard lubricants is required.

Monthly inspections should include but not be limited to:

- Visually inspect the stage and cables.
- Re-tighten loose connectors.
- Replace or repair damaged cables.
- Clean the PRO190SV and any components and cables as needed.
- Repair any damage before operating the PRO190SV.
- Inspect and perform an operational check on all safeguards and protective devices.

4.2. Cleaning and Lubrication

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

WARNING: In applications that have multiple stages bolted together to form multi-axis systems, the orthogonality may be lost if the stage tables of the support stages are loosened. Precision aligned stages should not be loosened or disassembled.

WARNING: Further disassembly of the stage is not recommended because proper assembly and calibration can only be done at the factory. In addition, a laser interferometer is required for post assembly verification to maintain warranties. Contact Aerotech for more information.

Cleaning

Before using a cleaning solvent on any part of the PRO190SV, blow away small particles and dust with nitrogen or, less preferably, clean, dry, compressed air.

Any external metal surface of the PRO190SV can be cleaned with isopropyl alcohol on a lint-free cloth.
WARNING: Make sure that all solvent has completely evaporated before attempting to move the stage.

Lubrication

For the cross-roller bearings, only use Kluberplex BEM 34-132 grease. Other greases may be incompatible.
If the application process uses only a small portion of travel for most of the duty cycle, periodically drive the stage through full travel to redistribute the lubrication in the bearings.

Lubrication Procedure

1. Drive the stage table to the bottom of travel, and remove power to the stage.
2. Remove the top cover to get access to the linear bearings (refer to Figure 4-1).
3. Clean any dust or debris that you can see inside of the assembly.
4. Use a clean, lint-free cloth with a side-to-side motion to remove any dirty or dried lubricant from the v channels of the linear bearing rails. Use a swab soaked in isopropyl alcohol to remove stubborn debris.
5. With a grease syringe, apply a 2 mm diameter (approximately) bead of lubricant to the relief area below the bearing v-channels, as close to the bearing cage as possible. Do this for about $1 / 4$ of the overall length for all bearing rails.
6. Restore power to the stage and move the stage through the full travel to distribute the grease. Use extreme caution when operating the stage without the top cover.
7. Remove power to the stage and repeat steps 5 and 6 two or more times to sufficiently lubricate the bearings.
8. Install the top cover.
9. Restore power to the stage, and drive the stage table back to its original position to redistribute lubricants.

Figure 4-1: Hardcover Removal (PRO165SV shown)

4.3. Troubleshooting

Symptom	Possible Cause and Solution
Stage will not move	Brake not released (if equipped with brake; refer to stage documentation). In Limit condition. Check limits (refer to Chapter 3) and refer to the Controller documentation for polarity and compatibility requirements (Example: voltage requirements). Controller trap or fault (refer to the Controller documentation).
Stage moves uncon- trollably	Encoder (sine and cosine) signal connections (refer to Chapter 3 and Controller documentation). Motor Connections (refer to Chapter 3 and the Controller documentation).
Stage oscillates or squeals	Gains misadjusted (refer to the Controller documentation). Encoder signals (refer to the Controller documentation).

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit https://www.aerotech.com/global-technical-support.aspx for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

Appendix B: Revision History

Revision	Description
	Updates were made to: 1.01 .00 • Sotor and Feedback Wiring 3.3. Motor and Feedback Specifications
1.00 .00	New manual

Index

2
2006/42/EC

A	
Accuracy and Temperature Effects	12
Accuracy of the Ballscrew	12
Altitude	12
Ambient Temperature	12
Attaching the Payload	20

B
Brake Specifications
Braycote® 602EF

	C	
cleaning		18
\quad mounting surface		38
\quad solvents		38
Cleaning	D	
		17
Dimensions	9	

E
Electrical Installation
Electrical Specifications
S-76
EN 60204-1 2010
EN ISO 121002010
Encoder Specifications
EU 2015/863
G
Global Technical Support
grease
Hall-Effect Sensors Specifications

H

Hall-Effect Sensors Specifications

9

Hardcover Removal 39
Humidity 12

Inspection Schedule
isopropyl alcohol

Kluberplex BEM 34-132
label
Limit Switch Specifications
lubricants
vacuum operation
Lubrication
I

K

L15

M

mounting surface
cleaning18
securing stage 18
multiaxis combinations
0
orthogonality
part number
Performance Specifications
S-76
32
Possible Cause 40
Protection Rating 12
protective ground connection
S
S-76
Electrical Specifications
Performance Specifications 32
serial number 15
Solution
solvents 38
Specifications 13
stabilizing stage 15
stage
distortion 18
stabilizing 15
Support 2
Symptom 40
T
Technical Support 2
Temperature Effects 12
Thermistor Specifications 31
torque 21
Troubleshooting 40
U
Unpacking and Handling the Stage 15
V
vacuum 14
vacuum guidelines 14
Vacuum Operation 14
Vibration 12
W
Warranty and Field Service 41

[^0]: Brake is optional.

