

Automation1 SI4 Stepper Controller

HARDWARE MANUAL

Revision 1.02

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2021, Aerotech, Inc., All rights reserved.

Table of Contents

Automation1 SI4 Stepper Controller	1
Table of Contents	3
List of Figures	4
List of Tables	5
EU Declaration of Conformity	/
Solicity Procedures and Warnings	9
Chapter 1: Introduction	. 13
1.1. Electrical Specifications	17
1.2. Mechanical Specifications	18
1.2.1. Mounting and Cooling	18
1.2.2. DIMENSIONS	19
1.2.3. DIN Rdll Wourling	23 24
1.2.4. OEM Mounting	24
1.4 Drive and Software Compatibility	25
Chapter 2: Installation and Configuration	27
2.1. Input Power Connections	28
2.1.2. Minimizing Noise for EMC/CE Compliance	28 20
2.1.2. Within 12 Ing Noise for Elvic/CE compliance	20 20
2.2.7 vis connector 2.2.1 Stepper Clock and Stepper Direction Signals	31
2.2.2. End of Travel Limits	
2.2.2.1. End of Travel Limit Phasing	34
2.2.3. Amplifier Fault Inputs	35
2.2.4. Amplifier Enable Output	36
2.2.5. Primary Encoder Inputs	37
2.2.5.1. Square Wave Encoder	38
2.2.5.2. Absolute Encoder	
2.2.5.3. Encoder Phasing	40
2.2.5.4. Stepper Motor Pridsing	41
2.3. Digital /O connector	42 43
2.3.2. Digital Inputs	46
2.3.3. High-Speed User Input	48
2.3.4. Position Synchronized Output (PSO) Interface	49
2.4. HyperWire Interface	50
2.5. System Interconnection	51
2.6. PC Configuration and Operation Information	52
Chapter 3: Maintenance	53
3.1. Preventative Maintenance	54
Appendix A: Warranty and Field Service	55
Appendix B: Revision History	57
Index	. 59
	-

List of Figures

Figure 1-1:	SI4 Stepper Controller	.13
Figure 1-2:	SI4-OEM Stepper Controller	14
Figure 1-3:	Functional Diagram	.16
Figure 1-4:	Dimensions [-2P1 (Standard 2-Axis)]	19
Figure 1-5:	Dimensions [-4P1 (Standard 4-Axis)]	20
Figure 1-6:	Dimensions [-2P2 (OEM 2-Axis)]	.21
Figure 1-7:	Dimensions [-4P2 (OEM 4-Axis)]	.22
Figure 1-8:	Din Rail Clip Dimensions	.23
Figure 2-1:	Control Supply Connections	.28
Figure 2-2:	Stepper Clock and Stepper Direction Timing	.31
Figure 2-3:	Stepper Clock and Stepper Direction Output Schematic	.32
Figure 2-4:	End of Travel Limit Input Connections	33
Figure 2-5:	End of Travel Limit Input Schematic	.33
Figure 2-6:	End of Travel Limit Input Diagnostic Display	34
Figure 2-7:	Fault Input Schematic	35
Figure 2-8:	Amplifier Enable Output Schematic	.36
Figure 2-9:	Square Wave Encoder Schematic (Axis Connector)	38
Figure 2-10:	Absolute Encoder Schematic (Axis Connector)	.39
Figure 2-11:	Encoder Phasing Reference Diagram (Standard)	40
Figure 2-12:	Position Feedback in the Diagnostic Display	.40
Figure 2-13:	Positive Motor Direction	.41
Figure 2-14:	Digital Outputs Schematic	.44
Figure 2-15:	Digital Outputs Connected in Current Sourcing Mode	.45
Figure 2-16:	Digital Outputs Connected in Current Sinking Mode	.45
Figure 2-17:	Digital Inputs Schematic	.46
Figure 2-18:	Digital Inputs Connected to Current Sourcing (PNP) Devices	.47
Figure 2-19:	Digital Inputs Connected to Current Sinking (NPN) Devices	47
Figure 2-20:	High-Speed Input	.48
Figure 2-21:	PSO TTL Outputs Schematic	.49
Figure 2-22:	System Interconnection Drawing (Best Practice)	.51

List of Tables

Table 1-1:	Feature Summary	15
Table 1-2:	Electrical Specifications	17
Table 1-3:	Mounting Specifications	18
Table 1-4:	Mounting Parts	23
Table 1-5:	OEM Mounting Parts	24
Table 1-6:	Environmental Specifications	25
Table 1-7:	Drive and Software Compatibility	26
Table 2-1:	Control Supply Connector Wiring Specifications	28
Table 2-2:	Mating Connector Part Numbers for the Control Supply Connector	28
Table 2-3:	Axis Connector Pinout	30
Table 2-4:	Mating Connector Part Numbers for the Axis Connector	30
Table 2-5:	Clock and Direction Pins on the Axis Connector	31
Table 2-6:	Stepper Clock and Stepper Direction Signal Output Specifications	31
Table 2-7:	Stepper Direction Signal Output Polarity	31
Table 2-8:	End of Travel Limit Pins on the Axis Connector	33
Table 2-9:	Amplifier Fault Input Specifications	35
Table 2-10:	Amplifier Enable Connector Pin on the Axis Connector	36
Table 2-11:	Amplifier Enable Output Specifications	36
Table 2-12:	Primary Encoder Input Pins on the Axis Connector	37
Table 2-13:	Square Wave Encoder Specifications	38
Table 2-14:	Digital I/O Connector Pinout	42
Table 2-15:	Mating Connector Part Numbers for the Digital I/O Connector	42
Table 2-16:	Digital Output Specifications	43
Table 2-17:	Digital Output Pins on Digital I/O Connector	43
Table 2-18:	Digital Input Specifications	46
Table 2-19:	Digital Input Pins on the Digital I/O Connector	46
Table 2-20:	High-Speed Input Specifications	48
Table 2-21:	High-Speed Input Pins on the Digital I/O Connector	48
Table 2-22:	PSO Specifications	49
Table 2-23:	PSO Output Pins on the Digital I/O Connector	49
Table 2-24:	HyperWire Card Part Number	50
Table 2-25:	HyperWire Cable Part Numbers	50
Table 2-26:	LED Description	53
Table 2-27:	Troubleshooting	53
Table 2-28:	Preventative Maintenance	54

This page intentionally left blank.

EU Declaration of Conformity

Manufacturer	Aerotech, Inc.	
Address	101 Zeta Drive	
	Pittsburgh, PA 15238-2811	
	USA	
Product	SI4	
Model/Types	All	

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

2014/35/EU	Low Voltage Directive
2011/65/EU	RoHS 2 Directive
EU 2015/863	Amendment RoHS 3 Directive

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

IEC 61010-1:2010

Authorized Representative

Mohmen

/ Simon Smith, European Director Aerotech Ltd The Old Brick Kiln, Ramsdell, Tadley Hampshire RG26 5PR UK

Safety Requirements for Electrical Equipment for

Measurement, Control, and Laboratory Use

Engineer Verifying Compliance

Date

(llox Mitwester) / Alex Weibel Aerotech, Inc. 101 Zeta Drive Pittsburgh, PA 15238-2811 USA

6/30/2021

CE

This page intentionally left blank.

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the controller.

• Read all parts of this manual before you install or operate the controller or before you do maintenance to your system.

- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

WARNING: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Supply each operator with the necessary protection from live electrical circuits.
- 2. Install the necessary precautions to supply safety and protection to the operator.
- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.
- 4. Before you connect wires to this product, disconnect the electrical power.

- 6. Before you do maintenance to the equipment, disconnect the electrical power.
- 7. Make sure that all system cables are correctly attached and positioned.
- 8. Do not use the cables or the connectors to lift or move this product.
- 9. Use this product only in environments and operating conditions that are approved in this manual.
- 10. Only trained operators should operate this equipment.

This page intentionally left blank.

Installation Overview

This image shows the order in which to make connections and settings that are typical to the SI4. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

Figure 1: Installation Connection Overview (4 Axis Shown)

Figure 2: Installation Connection Overview (4 Axis OEM Shown)

Chapter 1: Introduction

The SI4 is a multi-axis digital drive based on the HyperWire communication protocol. The drive provides deterministic behavior, auto-identification, and is fully software configurable. The drive controls amplifiers which accept clock-and-direction commands.

Figure 1-1: SI4 Stepper Controller

Table 1-1: Feature Summary

Standard Feature	PS		
24 VDC control supply input Section 2.1.1			
Stepper clock and direction outputs Section 2.2			
 Single-ended ar feedback 	nd line driver square wave quadrature encoder input for position	Section 2.2.5.	
Eight digital use	er outputs	Section 2.3.1.	
Nine digital use	er inputs		
 Eight digital 	inputs	Section 2.3.2.	
 One high-sp 	eed input	Section 2.3.3.	
Options			
Configuration			
-2P1	Two Axes of Control, Standard Packaging		
-2P2	Two Axes of Control, OEM Packaging		
-4P1	Four Axes of Control, Standard Packaging		
-4P2	4P2 Four Axes of Control, OEM Packaging		
Encoder Section 2.2.5.2.			
A0 No Absolute Encoder support			
-A1 Absolute Encoder support			
PSO		Section 2.3.4.	
-PSO1 One-axis PSO firing (includes One-axis Part-Speed PSO)			
-PSO2 Two-axis PSO firing (includes Two-axis Part-Speed PSO)			
PSO3 Three-axis PSO firing (includes Three-axis Part-Speed PSO)			
DSOG	Three-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the		
-P300	commanded vector velocity of 3 or more axes (includes One-Axis PSO).		
Version			
-DEFAULT	DEFAULT Firmware Matches Software Line		
LEGACY Legacy Firmware Version X.XX.XXX			

+5V – IN HyperWire Port PSO TTL HyperWire Digital I/O 1 Differential High-Speed Input OUT HyperWire Port 8 Digital Inputs 8 Digital Outputs (Sinking or Sourcing) -A1 Option SIN, COS, MRK (RS422) <u>A</u> CW and CCW Limits; Amplifier Fault Axis - CLK, DIR Amplifier Enable Encoder +5V / Common +24V Internal Control **Power Supply** Supply 0V \downarrow ⊕ m Figure 1-3: **Functional Diagram**

The block diagram that follows shows a summary of the connector signals.

1.1. Electrical Specifications

Table 1-2:Electrical Specifications

Description		SI4
Control Supply	Input Voltage	24 VDC
	Input Current	2-Axis: 2 A max, 0.45 A typical
		4-Axis: 2 A max, 0.6 A typical
User Power Supply Outp	ut	5 VDC (@ 500 mA)
Modes of Operation		Stepper
Protective Features		Control power supply under voltage

1.2. Mechanical Specifications

1.2.1. Mounting and Cooling

Install the SI4 in an IP54 compliant enclosure to comply with safety standards. Make sure that there is sufficient clearance surrounding the drive for free airflow and for the cables and connections.

Table 1-3: Mounting Specifications

		SI4	
Customer-Supplied Enclosure		IP54 Compliant	
		For DIN Rail Mounting,	
		refer to Section 1.2.3. DIN Rail Mounting	
Woight	Standard	~0.59 kg	
Weight	OEM	~0.23 kg	
Mounting Llordword	Standard	M4 [#8] screws (four locations, not included)	
Mounting Hardware	OEM	M3 screws and M3 standoffs (seven locations)	
Mounting Orientation		Vertical (typical)	
Dimensions		Refer to Section 1.2.2. Dimensions	
Minimum Cloaranco	Airflow	~25 mm	
Minimum Clearance	Connectors	~100 mm	
Minimum Airflow	Standard	Provided by internal fan	
(over the drive)	OEM	4.2 CMF (NOTE : Customer Supplied)	
Operating Temperature		Refer to Section 1.3. Environmental Specifications	

1.2.2. Dimensions

Figure 1-4: Dimensions [-2P1 (Standard 2-Axis)]

Figure 1-5: Dimensions [-4P1 (Standard 4-Axis)]

Figure 1-6: Dimensions [-2P2 (OEM 2-Axis)]

Figure 1-7: Dimensions [-4P2 (OEM 4-Axis)]

1.2.3. DIN Rail Mounting

A DIN rail can only be used with the -2P1 or -4P1 options.

DIN Rail Mounting Procedure:

- 1. Mount the DIN rail clip to the SI4. The clip and #6-32 x 1/4 flat head screws are included in the DIN rail clip kit.
- 2. Cut the DIN rail so one complete mounting hole extends beyond the last component at each end.
- 3. Secure the DIN Rail to the mounting surface with #10-32 screws spaced every six inches.
- NOTE: Do not install the DIN rail to the mounting surface with the components already attached. 4. Install all components on to the DIN rail.

Table 1-4:Mounting Parts

	Aerotech P/N
DIN Rail	EAM00914
DIN Rail Clip Kit	XC2-DIN

Figure 1-8: Din Rail Clip Dimensions

1.2.4. OEM Mounting

OEM Mounting Procedure:

- 1. Secure the seven M3 standoffs to the mounting surface with M3 hex nuts. These hex nuts are not included with the drive.
 - **NOTE**: Do not install the standoffs to the mounting surface with the drive already attached.
- 2. Attach the drive to the standoffs with the M3 screws. These screws are included with the drive.

Table 1-5: OEM Mounting Parts

	Aerotech P/N
M3 Threaded Hex Standoff, 10 mm length	EIH01181
M3 Philips Pan Head Screw, 8 mm length	HCY0003008

1.3. Environmental Specifications

	•		
Ambient	Operating: 0° to 40°C (32° to 104° F)		
Temperature	Storage: -30° to 85°C (-22° to 185° F)		
Humidity	The maximum relative humidity is 80% for temperatures that are less		
Non-condensing	than 31°C and decreases linearly to 50% relative humidity at 40°C.		
	0 m to 2,000 m (0 ft to 6,562 ft) above sea level.		
Operating Altitude	If you must operate this product above 2,000 m or below sea level, contact Aerotech, Inc.		
Dollution	Pollution Degree 2		
Pollution	Typically only nonconductive pollution occurs.		
Operation	Use only indoors		

 Table 1-6:
 Environmental Specifications

1.4. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

 Table 1-7:
 Drive and Software Compatibility

Drive Type	First Software Version	Last Software Version
Automation1 SI4	1.2.0	Current

Chapter 2: Installation and Configuration

Unpacking the Chassis

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the container of the SI4 for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the SI4 container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the SI4 is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the SI4 chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

2.1. Input Power Connections

The SI4 has one DC input power connector for control power. For a full list of electrical specifications, refer to Section 1.1. Refer to Section 2.5. for a System Interconnection Drawing.

2.1.1. Control Supply Connector

The Control Supply input supplies power to the communications and logic circuitry of the drive . The +24V input is connected to an internal fuse. Refer to Table 1-4 for the internal fuse value and part number. For an isolated DC supply, connect **0V** to protective ground at the supply. Use twisted pair wiring to minimize radiated noise emissions (refer to Figure 2-1).

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

Figure 2-1: Control Supply Connections

Table 2-1: Control Supply Connector Wiring Specifications

Pin	Description	Recommended Wire Size
	24 VDC (±10%) Control Power Input	
+24 V	(2-Axis: 2 A max, 0.45 A typical;	0.34 mm ² (#22 AWG)
	4-Axis: 2 A max, 0.6 A typical)	
0 V	Control Power Common Input	0.34 mm ² (#22 AWG)
	Protective Ground	0.34 mm ² (#22 AWG)

Table 2-2: Mating Connector Part Numbers for the Control Supply Connector

	Aerotech	Third Party	Screw	Wire Size:
Туре	P/N	P/N	Torque: N·m	mm² [AWG]
3-Pin Terminal Block	ECK02456	Phoenix 1839610	0.22 - 0.25	2.5 - 0.05 [14-30]

2.1.2. Minimizing Noise for EMC/CE Compliance

IMPORTANT: The SI4 is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for the feedback connector. Connect the shield to the backshell at each end of the cable.
- 2. Mount drives and power supplies on a conductive panel. Keep wire-run lengths to a minimum.
- 3. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

For additional SI4 system interconnection information, refer to Section 2.5. System Interconnection.

2.2. Axis Connector

The connector pin assignment is shown in Table 2-3 with detailed connection information in the following sections.

Pin #	Description	ln/Out/Bi	Connector	
1	Reserved	N/A		
2	Amplifier Enable	Output		
3	Signal Common	N/A		
4	Reserved	N/A		
5	Reserved	N/A		
6	Reserved	N/A		
7	Clockwise End of Travel Limit	Input		
8	+5 V Supply (500 mA)	N/A	13	
9	Primary Sine +	Input	25	
10	Primary Cosine +	Input		
11	Primary Marker +	Input		
	Absolute Data +	Bidirectional		
12	Absolute Clock +	Output		
13	Reserved	N/A		
14	Reserved	N/A		
15	Amplifier Fault	Input		
16	Stepper Clock	Output		
17	Stepper Direction	Output		
18	Reserved	N/A		
19	Reserved	N/A		
20	Counterclockwise End of Travel Limit	Input		
21	Signal Common N/A			
22	Primary Sine -	Input		
23	Primary Cosine -	Input		
24	Primary Marker -	Input		
24	Absolute Data -	Bidirectional		
25	Absolute Clock -	Output		

Table 2-3:Axis Connector Pinout

Table 2-4:	Mating Connector Part Numbers for the Axis Connector
------------	--

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.2.1. Stepper Clock and Stepper Direction Signals

The SI4 uses the Stepper Clock and Stepper Direction outputs to interface to stepper motor drivers.

Table 2-5: Clock and Direction Pins on the Axis Connector

Pin #	Description	ln/Out/Bi
16	Stepper Clock	Output
17	Stepper Direction	Output

Table 2-6: Stepper Clock and Stepper Direction Signal Output Specifications

Specification	Value
Output Voltage	5V TTL
Maximum Output Frequency	25 MHz
Maximum Source / Sink Current	±20 mA
Clock Default State	Logic Low (0 V)
Direction Default State	Logic Low (0 V)
Maximum Clock Pulse Width	25 μs
Minimum Clock Pulse Width	20 ns

To change the direction of the rotation of the motor, reverse the polarity of one of the phases. Reverse the A and A-N or B and B-N wires at the stepper motor driver.

Table 2-7: Stepper Direction Signal Output Polarity

Specification	Value
Negative / CCW Direction	Logic Low (0 V)
Positive / CW Direction	Logic High (+5 V)

Figure 2-2: Stepper Clock and Stepper Direction Timing

Figure 2-3: Stepper Clock and Stepper Direction Output Schematic

2.2.2. End of Travel Limits

End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. All of the end-of-travel limit inputs accept 0-5 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 1-1).

Table 2-8:	End of Travel Li	mit Pins on the	Axis Connector

Pin #	Description	ln/Out/Bi
3	Signal Common	N/A
7	Clockwise End of Travel Limit	Input
8	+5 V Supply (500 mA)	N/A
20	Counterclockwise End of Travel Limit	Input

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-4 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration. Use NPN-type normally-closed limit switches (Active High) to provide fail-safe behavior in the event of an open circuit.

Figure 2-4: End of Travel Limit Input Connections

Figure 2-5: End of Travel Limit Input Schematic

2.2.2.1. End of Travel Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-6).

Export 🚱 Settings						
Polling rate: Medium Diagnostics						
Axes	Item	X	Y	Z		
Diagnostics	Auxiliary Position Feedback	0000000000000	000000000000000000000000000000000000000	000000000000		
Drive Into	Analog Input 0	0.0000	0.0000	0.000		
Drive Status	Analog Input 1	0.0000	0.0000	0.000		
Fault	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000		
lasks	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000		
Task Mode Task Status 0	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000		
Task Status 1	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000		
Task Status 2	Average Velocity Feedback	0000000000000	00000000000000	000000000000		
Controller	Current Feedback	0.0000	0.0000	0.000		
Data Collection	Transition Offset Errors	0	0			
Drive Interface	Hardware					
Drive Nodes	Enable			· E		
Luiemet	CW					
	CCW					
	Home					
	Marker					
	Hall A					
	Hall B					
	Hall C					
	ESTOP			-		
	Brake					
	<					

Figure 2-6: End of Travel Limit Input Diagnostic Display

2.2.3. Amplifier Fault Inputs

Use the amplifier fault input to monitor the stepper driver status. Use the FaultSetup parameter to configure the active polarity. The use of this input is optional.

Fault Input Schematic

Specification Value Maximum Input Voltage 5V +5V +5V 10K -5\/ ≶ AMPLIFIER FAULT INPUT PIN-15 (-**VW-**10K .01UF 74LVC1G125

Figure 2-7:

Table 2-9: Amplifier Fault Input Specifications

2.2.4. Amplifier Enable Output

Use the AmplifierEnableOutputMode parameter to set the enabled state of the amplifier enable output to sinking or sourcing. The default state is sourcing. However, during a drive reset and when the amplifier is disabled, the amplifier enable output is high-impedance. To ensure a fail-safe state, you must install external pull resistors on the output to pull it to a safe state when the amplifier is disabled.

Table 2-10: Amplifier Enable Connector Pin on the Axis Connector

Pin #	Description	ln/Out/Bi
2	Amplifier Enable	Output

Table 2-11: Amplifier Enable Output Specifications

Specification	Value
High-Level Output Voltage	4.4 V
Output Current Source / Sink	10 mA

Figure 2-8: Amplifier Enable Output Schematic

2.2.5. Primary Encoder Inputs

The primary encoder inputs are accessible through the Axis connector. Use the PrimaryFeedbackType parameter to configure the SI4 to accept an encoder signal type.

Square Wave encoder signals: Section 2.2.5.1.

Absolute encoder signals: Section 2.2.5.2.

Refer to Section 2.2.5.3. for encoder feedback phasing.

IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-12: Primary Encoder Input Pins on the Axis Connector

Pin #	Description	ln/Out/Bi
8	+5 V Supply (500 mA)	N/A
9	Primary Sine +	Input
10	Primary Cosine +	Input
11	Primary Marker +	Input
11	Absolute Data +	Bidirectional
12	Absolute Clock +	Output
21	Signal Common	N/A
22	Primary Sine -	Input
23	Primary Cosine -	Input
24	Primary Marker -	Input
24	Absolute Data -	Bidirectional
25	Absolute Clock -	Output

2.2.5.1. Square Wave Encoder

The SI4 supports both single-ended and differential encoder feedback signals.

For single-ended feedback configuration, use the Sine +, Cosine +, and Marker + inputs. Do not connect the Sine -, Cosine - and Marker - inputs. Set the FeedbackSetup parameter to configure the hardware for single-ended encoder feedback devices.

For differential feedback configuration, the SI4 accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-13:	Square	Wave	Encoder	S	pecifications
				-	

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

Figure 2-9: Square Wave Encoder Schematic (Axis Connector)

2.2.5.2. Absolute Encoder

The SI4 retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. Refer to Figure 2-10 for the serial data stream interface. Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

Figure 2-10: Absolute Encoder Schematic (Axis Connector)

2.2.5.3. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-11 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-12).

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-11.

Export 💱 Settings					
Polling rate: Medium 🔻	Diagnostics				
Axes	Item	Х	Y	Z 🔺	
Axis Status	Status				
Diagnostics	Position Feedback	000000000000000000000000000000000000000	00000000000000	00000000000	
Drive Status	Position Calibration All	00000000000000	0000000000000	000000000000	
Fault	Position Master/Slave	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000	
→ Tasks	Position Gantry Offset	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	
Task Mode	Auxiliary Position Feedback	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000	
Task Status 0 Task Status 1	Analog Input 0	0.0000	0.0000	0.000	
Task Status 2	Analog Input 1	0.0000	0.0000	0.000	
Tasks	Digital Input 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000 ≡	
Controller	Digital Input 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	
Drive Interface	Digital Output 15:0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000	
Drive Nodes	Digital Output 31:16	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 000	
Ethernet	Average Velocity Feedback	0000000000000	0000000000000	00000000000	
	Current Feedback	0.0000	0.0000	0.000	
	Transition Offset Errors	0	0		
	Hardware				
	Enable				
	CW				
	CCW				
	Home				
	Marker				
	<				

Figure 2-12: Position Feedback in the Diagnostic Display

2.2.5.4. Stepper Motor Phasing

A stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.

With an Encoder: Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the CountsPerUnit parameters) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-13). If the motor moves in a counterclockwise direction, swap the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.

Figure 2-13: Positive Motor Direction

For Aerotech-supplied systems, the motor and encoder are correctly configured and connection adjustments are not necessary.

2.3. Digital I/O Connector

This connector has two groups of four digital, optically-isolated outputs, two groups of four digital, optically-isolated inputs, one differential high-speed user input, and one PSO output.

Pin #	Description	ln/Out/Bi	Connector
14	Output Common for Digital Outputs 0-3	N/A	
1	Opto-Isolated Digital Output 0	Output	
15	Opto-Isolated Digital Output 1	Output	
2	Opto-Isolated Digital Output 2	Output	
16	Opto-Isolated Digital Output 3	Output	
3	Output Common for Digital Outputs 4-7	N/A	
17	Opto-Isolated Digital Output 4	Output	
4	Opto-Isolated Digital Output 5	Output	
18	Opto-Isolated Digital Output 6	Output	
5	Opto-Isolated Digital Output 7	Output	
19	Input Common for Digital Inputs 0-3	N/A	
6	Opto-Isolated Digital Input 0	Input	
20	Opto-Isolated Digital Input 1	Input	
7	Opto-Isolated Digital Input 2	Input	
21	Opto-Isolated Digital Input 3	Input	
8	Input Common for Digital Inputs 4-7	N/A	
22	Opto-Isolated Digital Input 4	Input	
9	Opto-Isolated Digital Input 5	Input	
23	Opto-Isolated Digital Input 6	Input	
10	Opto-Isolated Digital Input 7	Input	
11	High-Speed Differential Input 8-	Input	-
24	High-Speed Differential Input 8+	Input	
26	PSO Output (TTL)	Output	
12	Common	N/A	
13	Common	N/A	
25	+5 V	N/A	

Table 2-14: Digital I/O Connector Pinout

 Table 2-15:
 Mating Connector Part Numbers for the Digital I/O Connector

U	<u> </u>	
Mating Connector	Aerotech P/N	Third Party P/N
26-Pin Connector	ECK02514	10126-3000PE
Backshell	ECK02517	10326-52F0-008

2.3.1. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a group in the same configuration. Refer to Figure 2-15 and Figure 2-16.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-15. To see an example of a current sinking output that has diode suppression, refer to Figure 2-16

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-16:Digital Output Specifications

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 µs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 2-17: Digital Output Pins on Digital I/O Connector

Pin #	Description	ln/Out/Bi
14	Output Common for Digital Outputs 0-3	N/A
1	Opto-Isolated Digital Output 0	Output
15	Opto-Isolated Digital Output 1	Output
2	Opto-Isolated Digital Output 2	Output
16	Opto-Isolated Digital Output 3	Output
3	Output Common for Digital Outputs 4-7	N/A
17	Opto-Isolated Digital Output 4	Output
4	Opto-Isolated Digital Output 5	Output
18	Opto-Isolated Digital Output 6	Output
5	Opto-Isolated Digital Output 7	Output

A diode required on each output that drives an inductive device (coil), such as a relay.

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

2.3.2. Digital Inputs

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 2-18.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 2-19.

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 2-18:Digital Input Specifications

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-19: Digital Input Pins on the Digital I/O Connector

Pin #	Description	ln/Out/Bi
19	Input Common for Digital Inputs 0-3	N/A
6	Opto-Isolated Digital Input 0	Input
20	Opto-Isolated Digital Input 1	Input
7	Opto-Isolated Digital Input 2	Input
21	Opto-Isolated Digital Input 3	Input
8	Input Common for Digital Inputs 4-7	N/A
22	Opto-Isolated Digital Input 4	Input
9	Opto-Isolated Digital Input 5	Input
23	Opto-Isolated Digital Input 6	Input
10	Opto-Isolated Digital Input 7	Input

Figure 2-17: Digital Inputs Schematic

Each group of four inputs must be connected in an all sourcing or all sinking configuration.

Figure 2-18: Digital Inputs Connected to Current Sourcing (PNP) Devices

Figure 2-19: Digital Inputs Connected to Current Sinking (NPN) Devices

2.3.3. High-Speed User Input

High-speed input 8 can be used as a general purpose input or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function topic in the Help file for more information.

Гable 2-20:	High-Speed Inpu	t Specifications

Specification	Value
Input Voltage	5V - 24 V input voltages
Input Current	10 mA
Input Device	HCPL-0630
Delay	50 nsec

Table 2-21: High-Speed Input Pins on the Digital I/O Connector

Pin #	Description	ln/Out/Bi
11	High-Speed Differential Input 8-	Input
24	High-Speed Differential Input 8+	Input

Figure 2-20: High-Speed Input

2.3.4. Position Synchronized Output (PSO) Interface

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.

Table 2-22: PSO Specifications

Specification	Value
Output	5 V, 50 mA (max)
Maximum PSO Output (Fire) Frequency	12.5 MHz
Output Latency	E pc
[Fire event to output change]	5115

Table 2-23: PSO Output Pins on the Digital I/O Connector

Pin #	Description	ln/Out/Bi
26	PSO Output (TTL)	Output
12	Common	N/A

Figure 2-21: PSO TTL Outputs Schematic

2.4. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-24:HyperWire Card Part Number

Part Number	Description	
HYPERWIRE-PCIE	HyperWire adapter, PCIe x4 interface	

Table 2-25:HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.5. System Interconnection

Figure 2-22: System Interconnection Drawing (Best Practice)

2.6. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

Chapter 3: Maintenance

In general, you should not have a reason to remove the cover or access the internal components. The SI4 does not have any user-configurable switches or jumpers. Internal fuses are not user-replaceable.

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the SI4
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

LED	Color	Description	
PWR	GREEN	The light will illuminate and remain illuminated while power is applied.	
	GREEN	Any of the axes are Enabled.	
	RED	Any of the axes are in a Fault Condition.	
ENB/FLT		Any of the axes are Enabled in a Fault Condition.	
	(alternates)	or	
		The light is configured to blink for setup.	

Table 2-26: LED Description

Table 2-27: Troubleshooting

Symptom	Possible Cause and Solution
No Communication	Make sure the power LED is illuminated (this indicates that power is present).
	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.

3.1. Preventative Maintenance

Do an inspection of the SI4 and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

Table 2-28: Preventative Maintenance

Check	Action to be Taken
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.
Do an inspection of the cooling vents.	Remove all material that collected in the vents.
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the drive.
Examine all cables and connections to make sure	Make sure that all connections are correctly attached and not loose.
they are correct.	Replace cables that are worn.
	Replace all broken connectors.

Cleaning

DANGER: Before you clean the SI4, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the chassis of the drive. If necessary, you can use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the drive. Also make sure that it does not go onto the outer connectors and components.

Do not use fluids and sprays to clean the drive because they can easily go into the chassis or onto the outer connectors and components. If a cleaning solution goes into the drive, internal contamination can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA, CANADA, MEXICO Aerotech, Inc. Global Headquarters

TAIWAN Aerotech Taiwan Full-Service Subsidiary **CHINA** Aerotech China Full-Service Subsidiary

UNITED KINGDOM Aerotech United Kingdom Full-Service Subsidiary **GERMANY** Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
1.02	Updates were made to:
	Figure 1-3
	Table 1-2
	Section 1.2.3. DIN Rail Mounting
	Section 2.3.3. High-Speed User Input
1.01	Added OEM configuration
1.00	New Manual

This page intentionally left blank.

Index

2014/35/EU

Α

2

7

7

Absolute Encoder (Axis Connector)		
Absolute Encoder Schematic (Axis Connector)		
Altitude		
Ambient Temperature		
Amplifier Enable Connector Pin on the Axis Connector		
Amplifier Enable Output		
Amplifier Enable Output Schematic		
Amplifier Enable Output Specifications		
Amplifier Fault Input Specifications		
Axis Connector		
Absolute Encoder		
Encoder Input		
End of Travel Limit Input		
Mating Connector Part Numbers		
Pinout		
Primary Encoder Input		
RS-422 Line Driver Encoder		
Square Wave Encoder		
Travel Limit Input		
Axis Enable Output		

В

С

Cables HyperWire cables, examining Check for fluids or electrically conductive material exposure Cleaning Clock and Direction Output Schematic Clock and Direction Timing Clock Output Signals connections, examining Control Supply Connections

Control Supply Connector	28
Mating Connector Part Numbers	28
Wiring Specifications	28
Control Supply specifications	17
cooling vents, inspecting	54
Customer order number	27

D

39	Declaration of Conformity	7
39	Digital I/O Connector	
25	Mating Connector Part Numbers	42
25	Digital I/O Connector Pinout	42
36	Digital Input Pins on the Digital I/O Connector	46
36	Digital Input Specifications	46
36	Digital Inputs	46
36	Digital Inputs Connected to a Current Sinking Device	47
35	Digital Inputs Connected to a Current Sourcing Device	47
	Digital Inputs Schematic	46
39	Digital Output Connector Pinout	43
37	Digital Output Specifications	43
33	Digital Outputs	43
30	Digital Outputs Connected in Current Sinking Mode	45
30	Digital Outputs Connected in Current Sourcing Mode	
37	Digital Outputs Schematic	44
38	Dimensions	19
38	Dimensions (2-Axis)	19,21
33	Dimensions (4-Axis)	20,22
36	DIN Rail	
	Mounting Procedure	23
	P/N	
39	EAM00914	23
55	DIN Rail Clip Kit	
	P/N	
	XC2-DIN	23
50	Direction Output Signals	31
50	Direction Signal Output Polarity	31
54	Drawing number	27
54	Drive and Software Compatibility	26
54		
32	E	
31	EAM00914 (DIN Rail Part Number)	23
31	Electrical Specifications	17
54	EMC/CE Compliance	29
28	Enclosure	18

BiSS absolute encoder

11-12

11

13

18

encoder	
absolute	39
Encoder Input (Axis Connector)	37
Encoder Input Pins on the Axis Connector	
Encoder Phasing	
Encoder Phasing Reference Diagram	40
End of Travel Limit Input (Axis Connector)	33
End of Travel Limit Input Connections	33
End of Travel Limit Input Diagnostic Display	34
End of Travel Limit Input Pins on the Axis Connector	33
End of Travel Limit Input Schematic	33
End of Travel Limit Phasing	34
EnDat absolute encoder	39
Environmental Specifications	25
EU 2015/863	7
examining parts	
cables	54
connections	54
examining, dangerous fluids	54
examining, dangerous material	54
External PSO Sync Input Pins on the Digital I/O Connector	
External PSO Synchronization	48

F

Feature Summary	15
Figure	
Absolute Encoder Schematic (Axis Connector)	39
Control Supply Connections	28
Digital Inputs Connected to a Current Sinking Device	47
Digital Inputs Connected to a Current Sourcing Device	e 47
Digital Inputs Schematic	46
Digital Outputs Schematic	44
Dimensions (2-Axis) 1	9,21
Dimensions (4-Axis) 2	0,22
End of Travel Limit Input Connections	33
End of Travel Limit Input Diagnostic Display	34
End of Travel Limit Input Schematic	33
High-Speed Input	48
Outputs Connected in Current Sinking Mode	45
Outputs Connected in Current Sourcing Mode	45
PSO TTL Outputs Schematic	49
Square Wave Encoder Schematic (Axis Connector)	38
TTL Outputs Schematic (PSO)	49
fluids, dangerous	54

Functional Diagram	16
н	
High-Speed Input	48
High-Speed Input Pins on the Digital I/O Connector	48
High-Speed Input Specifications	
High-Speed User Input	48
Humidity	25
HyperWire	50
Cable Part Numbers	50
Card Part Number	50
I	
Input Power Connections	28
inspecting cooling vents	54
Inspection	54
Installation and Configuration	27

М

Installation Connection Overview

Installation Overview

Introduction IP54 Compliant

Maintenance	53
material, electrically conductive	
Mating Connector P/N	
Axis Connector	30
Control Supply Connector	28
Digital I/O Connector	42
Mechanical Specifications	18
Minimizing Conducted, Radiated, and System Noise for	
EMC/CE Compliance	29
Modes of Operation	17
Mounting and Cooling	18
Mounting Hardware	18
Mounting Orientation	

0

OEM Mounting Procedure	24
Operation	25
Overview	13

Р		Specifications
packing list	27	Amplifier Enable Output
PC Configuration and Operation Information	52	Amplifier Fault Input
Phasing	34	Control Supply Connector Wiring
Stepper Motor	41	Digital Inputs
Pinout		Digital Outputs
Amplifier Enable Connector (Axis Connector)	36	High-Speed Input
Axis Connector	30	PSO
Digital I/O Connector	42	RS-422 Encoder (Axis Connector)
Digital Input Pins (Digital I/O Connector)	46	Square Wave Encoder (Axis Connector)
Digital Output Connector	43	Stepper Clock Signal Output
Encoder Input (Axis Connector)	37	Stepper Direction Signal Output
End of Travel Limit Input Pins (Axis Connector)	33	Unit Weight
External PSO Sync Input Pins on the Digital I/O		Square Wave Encoder
Connector	48	Square Wave Encoder Schematic (Axis Connector)
High-Speed Input Pins (Digital I/O Connector)	48	Square Wave Encoder Specifications (Axis Connector)
Primary Encoder Inputs (Axis Connector)	37	Stepper Clock and Stepper Direction Output Schematic
PSO Output Pins (Aux I/O Connector)	49	Stepper Clock and Stepper Direction Timing
Stepper Clock Pin (Axis Connector)	31	Stepper Clock Output Signals
Stepper Direction Pin (Axis Connector)	31	Stepper Clock Pin on the Axis Connector
Polarity of the Direction Signal Output	31	Stepper Clock Signal Output Specifications
Pollution	25	Stepper Direction Output Signals
Position Feedback in the Diagnostic Display	40	Stepper Direction Pin on the Axis Connector
Preventative Maintenance	54	Stepper Direction Signal Output Specifications
Primary Encoder Input (Axis Connector)	37	Stepper Motor Phasing
Primary Encoder Input Pins on the Axis Connector	37	System part number
Protective Features	17	
PSO		т
TTL Outputs Schematic	49	Table of Contents
PSO Output Pins on the Digital I/O Connector	49	Travel Limit Input (Axis Connector)
PSO Specifications	49	TTL Outputs Schematic (PSO)
PSO Synchronization	48	

R

Resolute absolute encoder
Revision History
RS-422 Encoder Specifications (Axis Connector)
RS-422 Line Driver Encoder

S

Safety Procedures and Warnings	
serial data stream	
serial number	

U	
Unit Weight	18
Unpacking the Chassis	27
Use	25
User Power Supply specifications	17
w	
Warranty and Field Service	55

Х

XC2-DIN (DIN Rail Clip Kit Part Number) 23

This page intentionally left blank.